首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

We characterized the runoff and erosion from a volcanic soil in an Austrocedrus chilensis forest affected by a wildfire, and we evaluated the effects of a mitigation treatment.

Methods

Rainfall simulations were performed in the unburned and burned forest, with and without vegetation cover, and under a mitigation treatment.

Results

After the wildfire, the mean infiltration rate decreased from 100 mm?h?1 in unburned soils to 51 and 64 mm?h?1 in the burned with and without litter and vegetation cover, respectively. The fast establishment of bryophytes accelerated the recovery of soil stability. Sediment production was negligible in the control plots (4.4 g?m?2); meanwhile in the burned plots, it was 118.7 g?m?2 and increased to 1026.1 g?m?2 in the burned and bare plots. Total C and N losses in the control plots were negligible, while in the burned and bare plots the organic C and total N removed were 98.25 and 1.64 g?m2, respectively. The effect of mitigation treatment was efficient in reducing the runoff, but it did not affect the sediment production.

Conclusions

These fertile volcanic soils promoted the recovery of vegetation in a short time after the wildfire, diminishing the risk of erosion.  相似文献   

2.

Background

Inhibition of AKT with MK-2206 has demonstrated synergism with anticancer agents. This phase 1 study assessed the MTD, DLTs, PK, and efficacy of MK-2206 in combination with cytotoxic and targeted therapies.

Methods

Advanced solid tumor patients received oral MK-2206 45 or 60 mg (QOD) with either carboplatin (AUC 6.0) and paclitaxel 200 mg/m2 (arm 1), docetaxel 75 mg/m2 (arm 2), or erlotinib 100 or 150 mg daily (arm 3); alternative schedules of MK-2206 135-200 mg QW or 90-250 mg Q3W were also tested.

Results

MTD of MK-2206 (N?=?72) was 45 mg QOD or 200 mg Q3W (arm 1); MAD was 200 mg Q3W (arm 2) and 135 mg QW (arm 3). DLTs included skin rash (arms 1, 3), febrile neutropenia (QOD, arms 1, 2), tinnitus (Q3W, arm 2), and stomatitis (QOD, arm 3). Common drug-related toxicities included fatigue (68%), nausea (49%), and rash (47%). Two patients with squamous cell carcinoma of the head and neck (arm 1; Q3W) demonstrated a complete and partial response (PR); additional PRs were observed in patients (1 each) with melanoma, endometrial, neuroendocrine prostate, NSCLC, and cervical cancers. Six patients had stable disease ≥6 months.

Conclusion

MK-2206 plus carboplatin and paclitaxel, docetaxel, or erlotinib was well-tolerated, with early evidence of antitumor activity.

Trial registration

ClinicalTrials.gov: NCT00848718.  相似文献   

3.
A recombinant l-fucose isomerase from Caldicellulosiruptor saccharolyticus was purified as a single 68 kDa band with an activity of 76 U mg?1. The molecular mass of the native enzyme was 204 kDa as a trimer. The maximum activity for l-fucose isomerization was at pH 7 and 75°C in the presence of 1 mM Mn2+. Its half-life at 70°C was 6.1 h. For aldose substrates, the enzyme displayed activity in decreasing order for l-fucose, with a k cat of 11,910 min?1 and a K m of 140 mM, d-arabinose, d-altrose, and l-galactose. These aldoses were converted to the ketoses l-fuculose, d-ribulose, d-psicose, and l-tagatose, respectively, with 24, 24, 85, 55% conversion yields after 3 h.  相似文献   

4.

Purpose

Vγ9Vδ2 (γδ) T lymphocytes, a critical peripheral blood lymphocyte subset, are directly cytotoxic against many solid and hematologic tumor types. Vγ9Vδ2 T lymphocytes can be selectively expanded in vivo with BrHPP (IPH1101) and IL-2. The present phase I trial was conducted with the aim of determining the maximum-tolerated dose (MTD) and safety of IPH1101 combined with a low dose of IL-2 in patients with solid tumors.

Experimental design

A 1-h intravenous infusion of IPH11 was administered alone at cycle 1, combined with a low dose of SC IL-2 (1 MIU/M2 d1 to d7) in the subsequent cycles (day 1 every 3 weeks). The dose of IPH1101 was escalated from 200 to 1,800 mg/m2.

Results

As much as 28 patients with solid tumors underwent a total of 109 treatment cycles. Pharmacodynamics data demonstrate that γδ T lymphocyte amplification in humans requires the co-administration of IL-2 and is dependent on IPH 1101 dose. Dose-limiting toxicity occurred in two patients at a dose of 1,800 mg/m2: one grade 3 fever (1 patient) and one grade 3 hypotension (1 patient) suggesting cytokine release syndrome immediately following the first infusion. At lower doses the treatment was well tolerated; the most frequent adverse events were mild fever, chills and abdominal pain, without exacerbation in the IL-2 combined cycles.

Conclusion

IPH1101 in combination with SC low-dose IL-2 is safe, well tolerated and induces a potent γδ T lymphocyte expansion in patients. Its clinical activity will be evaluated in phase II clinical trials.  相似文献   

5.
Mercado-Blanco  Jesús  Prieto  Pilar 《Plant and Soil》2012,358(1-2):301-322

Aims

This study aimed to measure the effect of plant diversity on N uptake in grasslands and to assess the mechanisms contributing to diversity effects.

Methods

Annual N uptake into above- and belowground organs and soil nitrate pools were measured in the Jena experiment on a floodplain soil with mixtures of 2–16 species and 1–4 functional groups, and monocultures. In mixtures, the deviation of measured data from data expected from monoculture performance was calculated to assess the contribution of complementarity/facilitation and selection.

Results

N uptake varied from <1 to 45 g?N m?2 yr?1, and was higher in grasslands with than without legumes. On average, N uptake was higher in mixtures (21?±?1 g?N m?2 yr?1) than monocultures (13?±?1 g?N m?2 yr?1), and increased with species richness in mixtures. However, compared to N uptake expected from biomass proportions of species in mixtures, N uptake of mixtures was only slightly higher and a significant surplus N uptake was confined to mixtures containing legumes and non-legumes.

Conclusions

In our study, high N uptake of species rich mixtures was mainly due to dominance of productive species and facilitation by legumes whereas complementarity among non-legumes was of minor relevance.  相似文献   

6.

Background and aims

The quantification of root dynamics remains a major challenge in ecological research because root sampling is laborious and prone to error due to unavoidable disturbance of the delicate soil-root interface. The objective of the present study was to quantify the distribution of the biomass and turnover of roots of poplars (Populus) and associated understory vegetation during the second growing season of a high-density short rotation coppice culture.

Methods

Roots were manually picked from soil samples collected with a soil core from narrow (75 cm apart) and wide rows (150 cm apart) of the double-row planting system from two genetically contrasting poplar genotypes. Several methods of estimating root production and turnover were compared.

Results

Poplar fine root biomass was higher in the narrow rows than in the wide rows. In spite of genetic differences in above-ground biomass, annual fine root productivity was similar for both genotypes (ca. 44 g DM m?2 year?1). Weed root biomass was equally distributed over the ground surface, and root productivity was more than two times higher compared to poplar fine roots (ca. 109 g DM m?2 year?1).

Conclusions

Early in SRC plantation development, weeds result in significant root competition to the crop tree poplars, but may confer certain ecosystem services such as carbon input to soil and retention of available soil N until the trees fully occupy the site.  相似文献   

7.

Background and aims

Nitrogen (N) deposition usually alters plant community structure and reduces plant biodiversity in grasslands. Seedling recruitment is essential for maintaining species richness and determines plant community composition. Arbuscular mycorrhizal fungi (AMF) are widespread symbiotic fungi and could facilitate seedling establishment. Here we conducted an experiment to address whether the influence of AMF on seedling recruitment depends on N addition and plant species.

Methods

Leymus chinensis were cultivated for 5 months in the microcosms that were inoculated with or without AMF at five N addition rates. Seeds of three main species (two C3 grasses and one non-N2-fixing forb) of the Eurasian steppe were sown to the 5-month-old microcosms. Seedling establishment was estimated by shoot biomass, N and P contents 7 weeks after seedling germination.

Results

AMF promoted seedlings recruitment of two C3 grasses at addition rates above 0.5 g N m?2. In contrast, seedling recruitment of the non-N2-fixing forb was increased by AMF at addition rates below 0.5 g N m?2 but was decreased above 2.5 g N m?2.

Conclusions

These results partly explain why N addition favored the dominance of grasses over forbs in perennial grassland communities. Our study indicates that AMF have the potential to influence plant community composition by mediating revegetation in the face of N deposition.  相似文献   

8.
Selenium is an essential chemopreventive antioxidant element to oxidative stress, although high concentrations of selenium induce toxic and oxidative effects on the human body. However, the mechanisms behind these effects remain elusive. We investigated toxic effects of different selenium concentrations in human promyelocytic leukemia HL-60 cells by evaluating Ca2+ mobilization, cell viability and caspase-3 and -9 activities at different sample times. We found the toxic concentration and toxic time of H2O2 as 100 μm and 10 h on cell viability in the cells using four different concentrations of H2O2 (1 μm–1 mm) and six different incubation times (30 min, 1, 2, 5, 10, 24 h). Then, we found the therapeutic concentration of selenium to be 200 nm by cells incubated in eight different concentrations of selenium (10 nm–1 mm) for 1 h. We measured Ca2+ release, cell viability and caspase-3 and -9 activities in cells incubated with high and low selenium concentrations at 30 min and 1, 2, 5, 10 and 24 h. Selenium (200 nm) elicited mild endoplasmic reticulum stress and mediated cell survival by modulating Ca2+ release, the caspases and cell apoptosis, whereas selenium concentrations as high as 1 mm induced severe endoplasmic reticulum stress and caused cell death by activating modulating Ca2+ release, the caspases and cell apoptosis. In conclusion, these results explained the molecular mechanisms of the chemoprotective effect of different concentrations of selenium on oxidative stress-induced apoptosis.  相似文献   

9.

Background and aims

Root functional traits are determinants of soil carbon storage; plant productivity; and ecosystem properties. However, few studies look at both annual and perennial roots, soil properties, and productivity in the context of field scale agricultural systems.

Methods

In Long Term and Conversion studies in North Central Kansas, USA; root biomass and length, soil carbon and nitrogen, microbial biomass, nematode and micro-arthropod communities were measured to a depth of one meter in paired perennial grassland and cropland wheat sites as well as a grassland site that had been converted to cropland using no tillage five years prior.

Results

In the Long Term Study root biomass was three to seven times greater (9.4 Mg ha?1 and 2.5 Mg ha?1 in May), and root length two times greater (52.5 km m?2 and 24.0 km m?2 in May) in perennial grassland than in cropland. Soil organic carbon and microbial biomass carbon were larger, numbers of Orbatid mites greater (2084 vs 730 mites m?2), and nematode communities more structured (Structure Index 67 vs 59) in perennial grassland versus annual cropland. Improved soil physical and biological properties in perennial grasslands were significantly correlated with larger, deeper root systems. In the Conversion Study root length and biomass, microbial biomass carbon, mite abundance and nematode community structure differed at some but not all dates and depths. Isotope analysis showed that five years after no-till conversion old perennial roots remained in soils of annual wheat fields and that all soil fractions except coarse particulate organic matter were derived from C4 plants.

Conclusions

Significant correlation between larger, longer roots in grasslands compared to annual croplands and improved soil biological, physical and chemical properties suggest that perennial roots are an important factor allowing perennial grasslands to maintain productivity and soil quality with few inputs. Perennial roots may persist and continue to influence soil properties long after conversion to annual systems.  相似文献   

10.
11.

Background & Aims

There is not a consensus on the best irrigation approach for super-high density (SHD) olive orchards. Our aim was to design and test a regulated deficit irrigation (RDI) strategy for a sustainable balance between water saving, tree vigour and oil production.

Methods

We tested our RDI strategy for 3 years in an ‘Arbequina’ orchard with 1,667 trees ha?1. Two levels of irrigation reduction were applied, 60RDI and 30RDI, scaled to replacing 60 % and 30 %, respectively, of the of irrigation needs (IN). We also had a full irrigation (FI) treatment as control, with IN totalling 4,701 m3 ha?1

Results

The 30RDI treatment showed the best balance between water saving, tree vigour and oil production. With a yearly irrigation amount (IA) of 1,366 m3 ha?1, which meant 72 % water saving as compared to FI, the reduction in oil yield was 26 % only.

Conclusions

Our results, together with recent knowledge on the effect of water stress on fruit development, allowed us to suggest a potentially improved RDI strategy for which a total IA of ca. 2,100 m3 ha?1 was calculated. Both some management details and the benefits of this suggested RDI strategy are still to be tested.  相似文献   

12.

Background and aims

The influences of succession and species diversity on fine root production are not well known in forests. This study aimed to investigate: (i) whether fine root biomass and production increased with successional stage and increasing tree species diversity; (ii) how forest type affected seasonal variation and regrowth of fine roots.

Methods

Sequential coring and ingrowth core methods were used to measure fine root production in four Chinese subtropical forests differing in successional stages and species diversity.

Results

Fine root biomass increased from 262 g·m?2 to 626 g·m?2 with increasing successional stage and species diversity. A similar trend was also found for fine root production, which increased from 86 to 114 g·m?2 yr ?1 for Cunninghamia lanceolata plantation to 211–240 g·m?2 yr ?1 for Choerospondias axillaries forest when estimated with sequential coring data. Fine root production calculated using the ingrowth core data ranged from 186 g·m?2 yr ?1 for C. lanceolata plantation to 513 g·m?2 yr ?1 for Lithocarpus glaber – Cyclobalanopsis glauca forest.

Conclusions

Fine root biomass and production increased along a successional gradient and increasing tree species diversity in subtropical forests. Fine roots in forests with higher species diversity exhibited higher seasonal variation and regrowth rate.  相似文献   

13.

Purpose

The coronary calcium score (CCS) predicts significant coronary artery disease (CAD) in the general population. While moderate chronic kidney disease (CKD) is associated with high CCS, the use of CCS to predict significant CAD in these patients is unknown.

Methods

A total of 704 patients underwent computed tomography coronary angiography for the assessment of CCS and CAD. Sixty-nine (10 %) patients had moderate CKD, defined by an estimated glomerular filtration rate (eGFR) between 30 and 59 mL/min/1.73m2, and the remaining patients were considered to be without significant CKD (eGFR?≥?60 mL/min/1.73m2).

Results

Patients with moderate CKD were older, had a higher CCS, and a higher prevalence of obstructive CAD than patients without significant CKD. Receiver-operator curve analysis showed that CCS predicted the presence of obstructive CAD in both patients with moderate CKD and those without significant CKD. In patients with moderate CKD, the optimal cut-off value of CCS to diagnose obstructive CAD was 140 (sensitivity 73 % and specificity of 70 %), and is 2.8 fold higher than in patients without significant CKD (cut-off value?=?50; sensitivity 75 % and specificity 75 %).

Conclusion

The present results demonstrate that CCS can predict obstructive CAD in patients with moderate CKD, although the optimal cut-off value is higher than in patients without significant CKD.  相似文献   

14.
d-Tagatose 3-epimerase family enzymes can efficiently catalyze the epimerization of free keto-sugars, which could be used for d-psicose production from d-fructose. In previous studies, all optimum pH values of these enzymes were found to be alkaline. In this study, a d-psicose 3-epimerase (DPEase) with neutral pH optimum from Clostridium bolteae (ATCC BAA-613) was identified and characterized. The gene encoding the recombinant DPEase was cloned and expressed in Escherichia coli. In order to characterize the catalytic properties, the recombinant DPEase was purified to electrophoretic homogeneity using nickel-affinity chromatography. Ethylenediaminetetraacetic acid was shown to inhibit the enzyme activity completely; therefore, the enzyme was identified as a metalloprotein that exhibited the highest activity in the presence of Co2+. Although the DPEase demonstrated the most activity at a pH ranging from 6.5 to 7.5, it exhibited optimal activity at pH 7.0. The optimal temperature for the recombinant DPEase was 55 °C, and the half-life was 156 min at 55 °C. Using d-psicose as the substrate, the apparent K m, k cat, and catalytic efficiency (k cat/K m) were 27.4 mM, 49 s?1, and 1.78 s?1 mM?1, respectively. Under the optimal conditions, the equilibrium ratio of d-fructose to d-psicose was 69:31. For high production of d-psicose, 216 g/L d-psicose could be produced with 28.8 % turnover yield at pH 6.5 and 55 °C. The recombinant DPEase exhibited weak-acid stability and thermostability and had a high affinity and turnover for the substrate d-fructose, indicating that the enzyme was a potential d-psicose producer for industrial production.  相似文献   

15.

Background and aims

Shrublands are ecosystems vulnerable to climate changes, with key functions such as carbon storage likely to be affected. In dwarf shrublands dominated by Calluna vulgaris, the aboveground carbon allocation is associated with community age and phase of development. As the Calluna community grows older, a shift to net biomass loss occurs and it was hypothesized this would result in carbon stock increases within the soil.

Methods

The interaction of community age with ecosystem carbon stocks was investigated through a chronosequence study on three Calluna communities, aged 11, 18 and 27 years.

Results

Aboveground Calluna carbon stock increased significantly from the 11 year community (0.73 kg C m?2) to the 18 year community (1.11 kg C m?2) but did not significantly change from 18 to 27 years (1.0 kg C m?2), indicating a net carbon gain that corresponded with the growth phase of the Calluna plants. Moss was also found to be a relatively large contributor to aboveground carbon stock (e.g. 30 % in the Young community). Moss has often been excluded in aboveground assessments on Calluna heathlands which may have led to previous stock underestimation. Belowground carbon stocks to 25 cm were six to nine times greater than in the aboveground pools. For example in the Young community, 8 % of the carbon stock was located aboveground, 35 % in the organic layer and 55 % in the mineral soil.

Conclusions

Increased heathland age resulted in increased aboveground carbon stock until peak production was reached at approximately 18 years of age. However, the proportionally large belowground carbon stock eclipsed any aboveground effect when total carbon stocks were considered. The investigation emphasized both the importance of including the mineral soil in sampling programs and of consider all major species, such as bryophytes, and vegetation age in carbon stock assessments.  相似文献   

16.

Aims

Soil respiration in forest plantations can be greatly affected by management practices such as irrigation. In northwest China, soil water is usually a limiting factor for the development of forest plantations. This study aims to examine the effects of irrigation intensity on soil respiration from three poplar clone plantations in this arid area.

Methods

The experiment included three poplar clones subjected to three irrigation intensities (without, low and high). Soil respiration was measured using a Li-6400-09 chamber during the growing season in 2007.

Results

Mean soil respiration rates were 2.92, 4.74 and 3.49 μmol m?2 s?1 for control, low and high irrigation treatments, respectively. Soil respiration decreased once soil water content was below a lower (14.8 %) or above an upper (26.2 %) threshold. When soil water content ranged from 14.8 % to 26.2 %, soil respiration increased and correlated with soil temperature. Fine root also played a role in the significant differences in soil CO2 efflux among the three treatments. Furthermore, the three poplar hybrid clones responded differently to irrigation regarding fine root production and soil CO2 efflux.

Conclusions

Irrigation intensity had a strong impact on soil respiration of the three poplar clone plantations, which was mainly because fine root biomass and microbial activities were greatly influenced by soil water conditions. Our results suggest that irrigation management is a main factor controlling soil carbon dynamics in forest plantation in arid regions.  相似文献   

17.

Background and aims

The roots of tussock-forming plants contribute to the formation of microtopographic features in many ecosystems, but the dynamics of such roots are poorly understood. We examined the spatial heterogeneity of tussock fine root dynamics to investigate allocation patterns and the role of root productivity in the persistence of tussock structures.

Methods

We compared the spatial variability of fine root (<1 mm, 1–2 mm) density, biomass, % live, allocation, turnover rate (using bomb 14C), and productivity of four Carex stricta Lam.-dominated tussock meadows in the upper Midwest, USA (3 reference, 1 restored site).

Results

Relative to underlying microsites, tussocks were warm, dry, and high in root density, productivity, % live biomass, and turnover. Root productivity averaged 649 g?m?2 yr?1 (±208) in reference sites, comprised 57 % (±10) of total net production, and was concentrated in tussocks (70 %?±?4). Root turnover rate averaged 0.63 yr?1 (±0.08), but tussocks had ~50 % faster root turnover than the underlying soil, and <1 mm roots turned over ~40 % faster than 1–2 mm roots.

Conclusions

Our detailed analysis of the spatial heterogeneity of tussock root dynamics suggests that high allocation and elevated turnover of tussock roots facilitates organic matter accumulation and tussock persistence over time.  相似文献   

18.

Background and aims

The direct measurement of denitrification dynamics and its product fractions is important for parameterizing process-oriented model(s) for nitrogen cycling in various soils. The aims of this study are to a) directly measure the denitrification potential and the fractions of nitrogenous gases as products of the process in laboratory, b) investigate the effects of the nitrate (NO 3 ? ) concentration on emissions of denitrification gases, and c) test the hypothesis that denitrification can be a major pathway of nitrous oxide (N2O) and nitric oxide (NO) production in calcic cambisols under conditions of simultaneously sufficient supplies of carbon and nitrogen substrates and anaerobiosis as to be found to occur commonly in agricultural lands.

Methods

Using the helium atmosphere (with or without oxygen) gas-flow-soil-core technique in laboratory, we directly measured the denitrification potential of a silt clay calcic cambisol and the production of nitrogen gas (N2), N2O and NO during denitrification under the conditions of seven levels of NO 3 ? concentrations (ranging from 10 to 250 mg N kg?1 dry soil) and an almost constant initial dissolved organic carbon concentration (300 mg C kg?1 dry soil).

Results

Almost all the soil NO 3 ? was consumed during anaerobic incubation, with 80–88 % of the consumed NO 3 ? recovered by measuring nitrogenous gases. The results showed that the increases in initial NO 3 ? concentrations significantly enhanced the denitrification potential and the emissions of N2 and N2O as products of this process. Despite the wide range of initial NO 3 ? concentrations, the ratios of N2, N2O and NO products to denitrification potential showed much narrower ranges of 51–78 % for N2, 14–36 % for N2O and 5–22 % for NO.

Conclusions

These results well support the above hypothesis and provide some parameters for simulating effects of variable soil NO 3 ? concentrations on denitrification process as needed for biogeochemical models.  相似文献   

19.

Background

We investigated interacting effects of matric potential and soil strength on root elongation of maize and lupin, and relations between root elongation rates and the length of bare (hairless) root apex.

Methods

Root elongation rates and the length of bare root apex were determined for maize and lupin seedlings in sandy loam soil of various matric potentials (?0.01 to ?1.6 MPa) and bulk densities (0.9 to 1.5 Mg m?3).

Results

Root elongation rates slowed with both decreasing matric potential and increasing penetrometer resistance. Root elongation of maize slowed to 10 % of the unimpeded rate when penetrometer resistance increased to 2 MPa, whereas lupin elongated at about 40 % of the unimpeded rate. Maize root elongation rate was more sensitive to changes in matric potential in loosely packed soil (penetrometer resistances <1 MPa) than lupin. Despite these differing responses, root elongation rate of both species was linearly correlated with length of the bare root apex (r2 0.69 to 0.97).

Conclusion

Maize root elongation was more sensitive to changes in matric potential and mechanical impedance than lupin. Robust linear relationships between elongation rate and length of bare apex suggest good potential for estimating root elongation rates for excavated roots.  相似文献   

20.

Objective

In chronic fatigue syndrome (CFS), only a few imaging and histopathological studies have previously assessed either cardiac dimensions/function or myocardial tissue, suggesting smaller left ventricular (LV) dimensions, LV wall motion abnormalities and occasionally viral persistence that may lead to cardiomyopathy. The present study with cardiac magnetic resonance (CMR) imaging is the first to use a contrast-enhanced approach to assess cardiac involvement, including tissue characterisation of the LV wall.

Methods

CMR measurements of 12 female CFS patients were compared with data of 36 age-matched, healthy female controls. With cine imaging, LV volumes, ejection fraction (EF), mass, and wall motion abnormalities were assessed. T2-weighted images were analysed for increased signal intensity, reflecting oedema (i.?e. inflammation). In addition, the presence of contrast enhancement, reflecting fibrosis (i.?e. myocardial damage), was analysed.

Results

When comparing CFS patients and healthy controls, LVEF (57.9 ± 4.3?% vs. 63.7 ± 3.7?%; p < 0.01), end-diastolic diameter (44 ± 3.7 mm vs. 49 ± 3.7 mm; p < 0.01), as well as body surface area corrected LV end-diastolic volume (77.5 ± 6.2 ml/m2 vs. 86.0 ± 9.3 ml/m2; p < 0.01), stroke volume (44.9 ± 4.5 ml/m2 vs. 54.9 ± 6.3 ml/m2; p < 0.001), and mass (39.8 ± 6.5 g/m2 vs. 49.6 ± 7.1 g/m2; p = 0.02) were significantly lower in patients. Wall motion abnormalities were observed in four patients and contrast enhancement (fibrosis) in three; none of the controls showed wall motion abnormalities or contrast enhancement. None of the patients or controls showed increased signal intensity on the T2-weighted images.

Conclusion

In patients with CFS, CMR demonstrated lower LV dimensions and a mildly reduced LV function. The presence of myocardial fibrosis in some CFS patients suggests that CMR assessment of cardiac involvement is warranted as part of the scientific exploration, which may imply serial non-invasive examinations.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号