首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of highly heat-resistant spores of Bacillus sporothermodurans in ultrahigh-temperature or sterilized consumer milk has emerged as an important item in the dairy industry. Their presence is considered undesirable since they hamper the achievement of commercial sterility requirements. By using a selective 30-min heat treatment at 100°C, 17 Belgian dairy farms were screened to evaluate the presence, sources, and nature of potentially highly heat-resistant spores in raw milk. High numbers of these spores were detected in the filter cloth of the milking equipment and in green crop and fodder samples. About 700 strains were isolated after the selective heating, of which 635 could be screened by fatty acid methyl ester analysis. Representative strains were subjected to amplified ribosomal DNA restriction analysis, 16S rRNA gene sequencing, percent G+C content, and DNA-DNA reassociations for further identification. The strain collection showed a remarkable diversity, with representatives of seven aerobic spore-forming genera. Bacillus licheniformis and Bacillus pallidus were the most predominant species overall. Twenty-three percent of the 603 spore-forming isolates proved to belong to 18 separate novel species. These findings suggest that the selective heating revealed a pool of unknown organisms with a higher heat-resistant character. This study showed that high spore counts can occur at the dairy farm and that feed and milking equipment can act as reservoirs or entry points for potentially highly heat-resistant spores into raw milk. Lowering this spore load by good hygienic measures could probably further reduce the contamination level of raw milk, in this way minimizing the aerobic spore-forming bacteria that could lead to spoilage of milk and dairy products. Assessment and characterization of this particular flora are of great importance to allow the dairy or food industry to adequately deal with newly arising microbiological problems.  相似文献   

2.
The presence of pathogenic bacteria is a major health risk factor in food samples and the commercial food supply chain is susceptible to bacterial contamination. Thus, rapid and sensitive identification methods are in demand for the food industry. Quantitative polymerase chain reaction (PCR) is one of the reliable specific methods with reasonably fast assay times. However, many constituents in food samples interfere with PCR, resulting in false results and thus hindering the usability of the method. Therefore, we aimed to develop an aptamer-based magnetic separation system as a sample preparation method for subsequent identification and quantification of the contaminant bacteria by real-time PCR. To achieve this goal, magnetic beads were prepared via suspension polymerization and grafted with glycidylmethacrylate (GMA) brushes that were modified into high quantities of amino groups. The magnetic beads were decorated with two different aptamer sequences binding specifically to Escherichia coli or Salmonella typhimurium. The results showed that even 1.0% milk inhibited PCR, but our magnetic affinity system capture of bacteria from 100% milk samples allowed accurate determination of bacterial contamination at less than 2.0 h with limit of detection around 100 CFU/mL for both bacteria in spiked-milk samples.  相似文献   

3.

Background

Intra-amniotic infection has long been recognized as the leading cause of preterm delivery. Microbial culture is the gold standard for the detection of intra-amniotic infection, but several days are required, and many bacterial species in the amniotic fluid are difficult to cultivate.

Methods

We developed a novel nested-PCR-based assay for detecting Mycoplasma, Ureaplasma, other bacteria and fungi in amniotic fluid samples within three hours of sample collection. To detect prokaryotes, eukaryote-made thermostable DNA polymerase, which is free from bacterial DNA contamination, is used in combination with bacterial universal primers. In contrast, to detect eukaryotes, conventional bacterially-made thermostable DNA polymerase is used in combination with fungal universal primers. To assess the validity of the PCR assay, we compared the PCR and conventional culture results using 300 amniotic fluid samples.

Results

Based on the detection level (positive and negative), 93.3% (280/300) of Mycoplasma, 94.3% (283/300) of Ureaplasma, 89.3% (268/300) of other bacteria and 99.7% (299/300) of fungi matched the culture results. Meanwhile, concerning the detection of bacteria other than Mycoplasma and Ureaplasma, 228 samples were negative according to the PCR method, 98.2% (224/228) of which were also negative based on the culture method. Employing the devised primer sets, mixed amniotic fluid infections of Mycoplasma, Ureaplasma and/or other bacteria could be clearly distinguished. In addition, we also attempted to compare the relative abundance in 28 amniotic fluid samples with mixed infection, and judged dominance by comparing the Ct values of quantitative real-time PCR.

Conclusions

We developed a novel PCR assay for the rapid detection of Mycoplasma, Ureaplasma, other bacteria and fungi in amniotic fluid samples. This assay can also be applied to accurately diagnose the absence of bacteria in samples. We believe that this assay will positively contribute to the treatment of intra-amniotic infection and the prevention of preterm delivery.  相似文献   

4.
Bacterial endospores are highly specialized cellular forms that allow endospore-forming Firmicutes (EFF) to tolerate harsh environmental conditions. EFF are considered ubiquitous in natural environments, in particular, those subjected to stress conditions. In addition to natural habitats, EFF are often the cause of contamination problems in anthropogenic environments, such as industrial production plants or hospitals. It is therefore desirable to assess their prevalence in environmental and industrial fields. To this end, a high-sensitivity detection method is still needed. The aim of this study was to develop and evaluate an approach based on quantitative PCR (qPCR). For this, the suitability of functional genes specific for and common to all EFF were evaluated. Seven genes were considered, but only spo0A was retained to identify conserved regions for qPCR primer design. An approach based on multivariate analysis was developed for primer design. Two primer sets were obtained and evaluated with 16 pure cultures, including representatives of the genera Bacillus, Paenibacillus, Brevibacillus, Geobacillus, Alicyclobacillus, Sulfobacillus, Clostridium, and Desulfotomaculum, as well as with environmental samples. The primer sets developed gave a reliable quantification when tested on laboratory strains, with the exception of Sulfobacillus and Desulfotomaculum. A test using sediment samples with a diverse EFF community also gave a reliable quantification compared to 16S rRNA gene pyrosequencing. A detection limit of about 104 cells (or spores) per gram of initial material was calculated, indicating this method has a promising potential for the detection of EFF over a wide range of applications.  相似文献   

5.
The TaqMan real-time PCR method for the quantitative detection of C. botulinum type A was developed based on sequence-specific hybridization probes. The validity of this assay was verified by using 10 genera of 20 strains, including reference strains of C. botulinum types A, B, C, D, E and F. The detection limit of this assay was evaluated on C. botulinum type A, using a 10-fold dilution series of DNA and spores . The DNA and spores were detected up to level of 0.1 ng/ml and 10(2)spores/ml, respectively. Spore spiked food sample preparation prior to the real-time PCR was performed by two methods, heat treatment and GuSCN. The detection limits after heat treatment showed 10(2) spores/ml for spiked sausage slurry, and 10(3) spores/ml for spiked canned corn slurry, while detection limits after GuSCN precipitation showed 10(2) spores/ml in both sausage and canned corn. Therefore the real-time PCR assay after GuSCN precipitation is useful for the quantification of C. botulinum type A because it showed identical CT values in both pure spore solutions and food slurries. We suggest that quantitative analysis of C. botulinum type A by TaqMan real-time PCR can be a rapid and accurate assessment method for botulinal risk in food samples.  相似文献   

6.
Aims: The aim of this study was to develop a sensitive real-time polymerase chain reaction (PCR) assay for the rapid detection of Cladosporium fulvum in tomato leaves. Methods and Results: Three PCR primer pairs were designed based on the nucleotide sequences of: (i) the internal transcribed spacer regions of ribosomal RNA; (ii) a microsatellite region amplified by the microsatellite primer M13; and (iii) the β-tubulin gene of C. fulvum. Each primer pair amplified the expected target DNA fragment from geographically diverse isolates of C. fulvum. No PCR products were amplified with these primer pairs from DNA of other fungal species. Among the three pairs of primers, the primer pair CfF1/CfR1 developed based on the microsatellite region was the most sensitive. Using this sensitive primer pair, a real-time PCR assay was developed to detect early infection of C. fulvum in tomato leaves. Significance and Impact of the Study: DNA regions amplified by the microsatellite primer M13 have a high potential for developing highly sensitive species-specific PCR primers for the detection of phytopathogenic fungi. The real-time PCR assay developed in this study is useful in monitoring early infection of C. fulvum, and can help growers make timely decisions on fungicide application.  相似文献   

7.
Within the paradigm of clinical infectious disease research, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa represent the four most clinically relevant, and hence most extensively studied bacteria. Current culture-based methods for identifying these organisms are slow and cumbersome, and there is increasing need for more rapid and accurate molecular detection methods. Using bioinformatic tools, 962,279 bacterial 16S rRNA gene sequences were aligned, and regions of homology were selected to generate a set of real-time PCR primers that target 93.6% of all bacterial 16S rRNA sequences published to date. A set of four species-specific real-time PCR primer pairs were also designed, capable of detecting less than 100 genome copies of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa. All primers were tested for specificity in vitro against 50 species of Gram-positive and –negative bacteria. Additionally, the species-specific primers were tested against a panel of 200 clinical isolates of each species, randomly selected from a large repository of clinical isolates from diverse areas and sources. A comparison of culture and real-time PCR demonstrated 100% concordance. The primers were incorporated into a rapid assay capable of positive identification from plate or broth cultures in less than 90 minutes. Furthermore, our data demonstrate that current targets, such as the uidA gene in E.coli, are not suitable as species-specific genes due to sequence variation. The assay described herein is rapid, cost-effective and accurate, and can be easily incorporated into any research laboratory capable of real-time PCR.  相似文献   

8.
A multiplex PCR assay based on the 16S rRNA genes was developed for the simultaneous detection of three major fish pathogens, Aeromonas salmonicida, Flavobacterium psychrophilum, and Yersinia ruckeri. The assay proved to be specific and as sensitive as each single PCR assay, with detection limits in the range of 6, 0.6, and 27 CFU for A. salmonicida, F. psychrophilum, and Y. ruckeri, respectively. The assay was useful for the detection of the bacteria in artificially infected fish as well as in fish farm outbreaks. Results revealed that this multiplex PCR system permits a specific, sensitive, reproducible, and rapid method for the routine laboratory diagnosis of infections produced by these three bacteria.  相似文献   

9.
PCR assays were developed for the direct detection of Paenibacillus larvae in honey samples and compared with isolation and biochemical characterization procedures. Different primer pairs, designed from the 16S rRNA and the metalloproteinase precursor gene regions, and different DNA extraction methods were tested and compared. The sensitivity of the reactions was evaluated by serial dilutions of DNA extracts obtained from P. larvae cultures. The specificity of the primers was assessed by analyzing related Paenibacillus and Bacillus strains isolated from honey. The PCR assays also amplified these related bacteria, but at lower sensitivity. In the next step, the PCR assays were applied to contaminated honey and other bee products originating from 15 countries. Lysozyme treatment followed by proteinase K digestion was determined to be the best DNA extraction method for P. larvae spores. The most sensitive primer pair detected P. larvae in 18 of 23 contaminated honey samples, as well as in pollen, wax, and brood. Honey specimens containing saprophyte bacilli and paenibacilli, but not P. larvae, were PCR negative. Although the isolation and biochemical identification method (BioLog) showed higher sensitivity and specificity, PCR proved to be a valuable technique for large-scale screening of honey samples for American foulbrood, especially considering its rapidity and moderate costs.  相似文献   

10.
Summary The success of a preservation method with respect toClostridium botulinum can be measured by its effect on the probability that a single spore would result in growth and formation of toxin. In canned, low-acid foods, the minimum heat-process is designed to reduce the probability of survival of a single, heat-resistant spore ofC. botulinum by a factor of 1012. In some foods, safety depends on the combination of inactivation and inhibition ofC. botulinum. The degree of protection (Pr) can be expressed asPr=Ds+In, whereDs is the decimal destruction of spores ofC. botulinum andIn is the decimal inhibition. A similar approach can be used in the case of other bacteria.Pr=log 1/P, whereP=the probability that an individual spore or bacterium will survive and result in growth.P can be estimated as the number of spores or bacteria that survive and initiate growth in a culture medium or food divided by the number of viable spores or bacteria inoculated into the medium or food. The effects of combinations of preservative factors can be measured by their effect onP at a stated temperature for a stated time. In experiments to determine the effects of preservative factors on an anaerobic bacterium such asC. botulinum it is essential that oxygen should be eliminated, unless it is controlled as an inhibitory factor. Thus experiments in culture media should be done under strictly anaerobic conditions at a known, low redox potential. The results of experiments to determine the effects of preservative factors onP after a series of incubation times can be modeled by methods similar to those used to model the effect of preservative factors on rate of growth and on lag period. Experiments to determine the effect of preservative factors on the probability of growth from a single spore or bacterium ofC. botulinum are discussed. A few reports of similar experiments with other bacteria have been published and are described. This approach has the advantage that it takes account of the inoculum level of bacteria.Mention of brand of firm names does not constitute an endorsement by the US Department of Agriculture over others of a similar nature not mentioned.  相似文献   

11.
Two PCR primer pairs specific for Helminthosporium solani, which causes silver scurf on potato tubers, were designed from nucleotide sequences of the nuclear ribosomal internal transcribed spacer regions of H. solani. Both primer pairs amplified a single product with DNA from 48 North American and European isolates of H. solani, but not with DNA from 42 other fungi. Primers also amplified a single product with DNA extracted from silver scurf lesions on potato tubers and other plant tissue inoculated with spores of H. solani. Detection of the fungus in infested soil was only possible with nested PCR and after processing soil with a bead beater. Specific amplification of H. solani DNA can be used to study the saprophytic and pathogenic activity of this fungus in soil and plant tissue.  相似文献   

12.
The time/temperature profiles experienced by spores on the track from their natural sporulation environment to consumable food products may be highly diverse. Temperature has been documented as an important factor that may activate spores, i.e. potentiates spores to germinate. There is, however, limited knowledge about the relationship between the expected temperature history and the subsequent germination characteristics of bacterial spores. We show here that the germination rate of five different Bacillus spore populations, represented by strains of Bacillus cereus, Bacillus weihenstephanensis, Bacillus pumilus, Bacillus licheniformis and Bacillus subtilis could be increased following 1 week storage at moderately elevated temperatures, 30–33 °C, compared to spores stored at 3–8 °C. The results imply that spores contamination routes to foods, specifically the temperature history, could be highly relevant data in predictive modeling of food spoilage and safety. Activation at these moderately elevated temperatures may be a native form of spore activation in their natural habitats, knowledge that also could be useful in development of decontamination strategies for mildly heated foods.  相似文献   

13.
The highly potent botulinum neurotoxins are responsible for botulism, a severe neuroparalytic disease. Strains of nonproteolytic Clostridium botulinum form neurotoxins of types B, E, and F and are the main hazard associated with minimally heated refrigerated foods. Recent developments in quantitative microbiological risk assessment (QMRA) and food safety objectives (FSO) have made food safety more quantitative and include, as inputs, probability distributions for the contamination of food materials and foods. A new method that combines a selective enrichment culture with multiplex PCR has been developed and validated to enumerate specifically the spores of nonproteolytic C. botulinum. Key features of this new method include the following: (i) it is specific for nonproteolytic C. botulinum (and does not detect proteolytic C. botulinum), (ii) the detection limit has been determined for each food tested (using carefully structured control samples), and (iii) a low detection limit has been achieved by the use of selective enrichment and large test samples. The method has been used to enumerate spores of nonproteolytic C. botulinum in 637 samples of 19 food materials included in pasta-based minimally heated refrigerated foods and in 7 complete foods. A total of 32 samples (5 egg pastas and 27 scallops) contained spores of nonproteolytic C. botulinum type B or F. The majority of samples contained <100 spores/kg, but one sample of scallops contained 444 spores/kg. Nonproteolytic C. botulinum type E was not detected. Importantly, for QMRA and FSO, the construction of probability distributions will enable the frequency of packs containing particular levels of contamination to be determined.Food-borne botulism is a severe and deadly intoxication caused by the consumption of food containing as little as 30 to 100 ng of preformed botulinum neurotoxin (45). More than 2,500 cases of botulism were reported in Europe in 1999 and 2000, with the majority of cases in the east of the continent (44). Currently, 25 to 50 food-borne botulism cases are diagnosed annually in the United States (27). There are seven distinct botulinum neurotoxins (types A to G) and a number of subtypes (6, 26, 45). In view of the potency of the botulinum neurotoxin and the severity of botulism, four phylogenetically distinct bacteria are grouped together as the Clostridium botulinum species, solely on the basis of their ability to form botulinum neurotoxin. The divergence between these four distinct bacteria is strong enough to merit their classification as distinct species and in some cases is significantly greater than that between bacteria belonging to different genera, e.g., Bacillus subtilis and Staphylococcus aureus (7). Two of these bacteria (proteolytic C. botulinum and nonproteolytic C. botulinum) are responsible for the majority of cases of food-borne botulism. Strains of proteolytic C. botulinum produce neurotoxins of type A, B, or F, form spores of high heat resistance, and have a minimum growth temperature of approximately 12°C (39). Strains of nonproteolytic C. botulinum produce neurotoxins of type B, E, or F, form spores of moderate heat resistance, and are able to grow and form toxin at 3°C (18, 48) and are recognized as the major hazard associated with minimally heated refrigerated foods (4, 37, 43, 44, 48). These new foods meet consumer demand for high-quality, convenient foods that are low in preservatives, and sales are presently increasing by about 10% per annum in many countries (3, 47).Quantitative microbiological risk assessment (QMRA) is now established as an important microbiology food safety tool (42). Process risk models have been used to assess the safety of specific foods with respect to nonproteolytic C. botulinum and the food-borne botulism hazard (e.g., 2, 41). These process risk models benefit from high-quality information, including that on the incidence of spores of nonproteolytic C. botulinum spores in food materials. The implementation of food safety objectives (FSO) also benefits from the availability of high-quality information on the microbial contamination of foods and food materials (24). This information is most effective in the form of probability distributions rather than as average spore concentrations or other statistics.The difficulty with enumerating nonproteolytic C. botulinum in foods is that there is no effective selective culture medium available. Surveys of the extent of contamination of foods and food materials have used a nonselective enrichment followed by either testing for neurotoxin using a mouse test or enzyme-linked immunosorbent assay (ELISA) or testing for the presence of neurotoxin genes using a PCR test (3, 10, 13, 35, 38, 39). This approach, however, is not optimized for nonproteolytic C. botulinum or proteolytic C. botulinum (therefore potentially failing to recover all spores of either organism) and may also not distinguish nonproteolytic C. botulinum from proteolytic C. botulinum. Heating at 80°C for 10 min followed by incubation at 35°C (54) may be reasonably selective for proteolytic C. botulinum, but there is no similar approach for nonproteolytic C. botulinum, although incubation at 28°C (54) may offer an element of selection. It is necessary, therefore, to develop a method to enumerate spores of nonproteolytic C. botulinum in food materials that is robust and optimized, as well as sensitive and specific for this particular pathogen (and does not also detect proteolytic C. botulinum). When enumerating bacteria in foods, it is essential to demonstrate the efficiency of the method by verifying that small concentrations (in the present study, spores of nonproteolytic C. botulinum) can be detected following addition to test samples.This paper describes the development, validation, and application of a new method to enumerate spores of nonproteolytic C. botulinum in foods and in food materials. This method has been designed to generate data for the construction of probability distributions that can be used in QMRA and FSO settings. Most of the effort has been dedicated to the development and evaluation of the enrichment procedure rather than the PCR test, as the PCR test has received much attention from others (e.g., 3, 10, 16, 36, 38). A low-temperature selective-enrichment procedure is described that has been optimized specifically for nonproteolytic C. botulinum over proteolytic C. botulinum and other bacteria. In order to detect low concentrations of spores, large quantities (200 g) of food materials and foods have been tested. Specific detection of neurotoxin genes is achieved by the use of an established multiplex PCR (36), with an internal amplification control now included (25). By the use of a set of control samples inoculated with defined concentrations of spores of nonproteolytic C. botulinum, the detection limit has been estimated for each food material and food tested. The method has been used in an extensive survey of raw materials intended for use in pasta ready meals, as well as the final meals themselves. The implications for risk assessment and risk management of chilled foods are discussed.  相似文献   

14.
A system was developed for the detection of denitrifying bacteria by the amplification of specific nitrite reductase gene fragments with PCR. Primer sequences were found for the amplification of fragments from both nitrite reductase genes (nirK and nirS) after comparative sequence analysis. Whenever amplification was tried with these primers, the known nir type of denitrifying laboratory cultures could be confirmed. Likewise, the method allowed a determination of the nir type of five laboratory strains. The nirK gene could be amplified from Blastobacter denitrificans, Alcaligenes xylosoxidans, and Alcaligenes sp. (DSM 30128); the nirS gene was amplified from Alcaligenes eutrophus DSM 530 and from the denitrifying isolate IFAM 3698. For each of the two genes, at least one primer combination amplified successfully for all of the test strains. Specific amplification products were not obtained with nondenitrifying bacteria or with strains of the other nir type. The specificity of the amplified products was confirmed by subsequent sequencing. These results suggest the suitability of the method for the qualitative detection of denitrifying bacteria in environmental samples. This was shown by applying one generally amplifying primer combination for each nir gene developed in this study to total DNA preparations from aquatic habitats.  相似文献   

15.
A major obstacle in the culture-independent estimation of the abundance of bacteria associated with plants is contamination with plant organelles, which precludes the use of universal rRNA bacterial primers in quantitative PCR applications. We present here a PCR-based method that allows a priori determination of the degree of chloroplast and mitochondrial contamination in DNA samples from plant environments. It is based on differential digestibility of chloroplast, mitochondrial and bacterial small subunit rRNA gene amplicons with the restriction enzymes AfeI and BbvCI. Using this method, we demonstrated for field-grown lettuce plants that even a gentle washing protocol, designed to recover the microbial community and its metagenome from the leaf surface, resulted in substantial contamination with chloroplast DNA. This finding cautions against the use of universal primer pairs that do not exclude chloroplast DNA from amplification, because they risk overestimation of bacterial population sizes. In contrast, contamination with mitochondrial 18S rRNA was minor in the lettuce phyllosphere. These findings were confirmed by real-time PCR using primer sets specific for small subunit rRNA genes from bacteria, chloroplasts, and mitochondria. Based on these results, we propose two primer pairs (534f/783r and mito1345f/mito1430r) which between them offer an indirect means of faithfully estimating bacterial abundances on plants, by deduction of the mito1345f/mito1430r-based mitochondrial count from that obtained with 534f/783r, which amplifies both bacterial and mitochondrial DNA but excludes chloroplast. In this manner, we estimated the number of total bacteria on most leaves of field-grown lettuce to be between 105 and 106 g− 1 of leaf, which was 1-3 orders of magnitudes higher than the number of colony-forming units that were retrieved from the same leaf surfaces on agar plates.  相似文献   

16.
We have developed a novel PCR-based assay for individual and simultaneous detection of three major pathogens (microsporidians, nucleopolyhedrovirus (NPV) and densovirus (DNV)) infecting the silkworm, Bombyx mori. Multiplex PCR, using three primer pairs, two of which were designed from the conserved regions of 16S small subunit ribosomal RNA gene of microsporidians, and polyhedrin gene of NPVs respectively, and a third primer pair designed from the internal sequences of B. mori DNVs (BmDNV), showed discrete and pathogen specific PCR products. The assay showed high specificity and sensitivity for the pathogenic DNA. Under optimized PCR conditions, the assay yielded a 794 bp DNA fragment from Nosema bombycis, 471 bp fragment from B. mori NPV (BmNPV) and 391 bp fragment from BmDNV. Further, this detection method was successfully applied to other silkworm species such as Antheraea mylitta and Samia cynthia ricini, in detecting same or similar pathogens infecting them. This method is a valuable supplement to the conventional microscopic diagnostic methods and can be used for the early detection of pathogens infecting silkworms. Furthermore it can assist research and extension centers for the safe supply of disease-free silkworms to farmers.  相似文献   

17.
Detection of Microbial Pathogens in Shellfish with Multiplex PCR   总被引:16,自引:0,他引:16  
Multiplex PCR amplification of uidA, cth, invA, ctx, and tl genes was developed enabling simultaneous detection in shellfish of Escherichia coli, an indicator of fecal contamination and microbial pathogens, Salmonella typhimurium, Vibrio vulnificus, V. cholerae, and V. parahaemolyticus, respectively. Each of the five pairs of oligonucleotide primers was found to support PCR amplifications of only its targeted gene. The optimized multiplex PCR reaction utilized a PCR reaction buffer containing 2.5 mM MgCl2 and primer annealing temperature of 55°C. Oyster tissue homogenate seeded with these microbial pathogens was subjected to DNA purification by the Chelex™ 100 (BioRad) method. The sensitivity of detection for each of the microbial pathogens was ≤101–102 cells following a “double” multiplex PCR amplification approach. Amplified target genes in a multiplex PCR reaction were subjected to a colorimetric GeneComb™ (BioRad) DNA-DNA hybridization assay. This assay was rapid and showed sensitivity of detection comparable to the agarose gel electrophoresis method. The colorimetric GeneComb™ assay avoids use of hazardous materials inherent in conventional gel electrophoresis and radioactive-based hybridization methods. Multiplex PCR amplification, followed by colorimetric GeneComb™ DNA-DNA hybridization, has been shown to be an effective, sensitive, and rapid method to detect microbial pathogens in shellfish. Received: 17 November 1997 / Accepted: 17 February 1998  相似文献   

18.
Multiplex PCR to detect four different tomato-infecting pathogens   总被引:2,自引:0,他引:2  
This work was aimed to develop a multiplex PCR assay to detect infectious agents such as Clavibacter michiganensis subsp. michiganensis, Fusarium sp, Leveillula taurica, and begomoviruses in tomato (Solanum lycopersicum) plants. Specific primer sets of each pathogen were designed based on intergenic ribosomal RNA sequences for the first three, whereas for begomoviruses, primers were designed based on conserved regions. The design also considered that the length (200–800 bp) of the PCR products was resolvable by electrophoresis; thus 296, 380, 457, and 731 bp fragments for Clavibacter, Fusarium, Leveillula, and begomoviruses, respectively, were considered. PCR conditions were optimized to amplify all the products in a single tube from genomic DNA and circumvent PCR inhibitors from infected plants. Finally, when the multiplex PCR assay was tested with tomato plants infected with any of the four pathogens, specific PCR products confirmed the presence of the pathogens. Optimized PCR multiplex allowed for the accurate and simultaneous detection of Clavibacter, Fusarium, Leveillula, and begomoviruses in infected plants or seeds from tomato.  相似文献   

19.
A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies.  相似文献   

20.
Shigella flexneri, Salmonella enterica serotype Typhimurium, and Listeria monocytogenes were applied to FTA filters, and the filters were used directly as templates to demonstrate their sensitivity and applicability in PCR-based detection assays. With pure cultures, the sensitivities of detection by FTA filter-based PCR were 30 to 50 and 200 CFU for the gram-negative enterics and Listeria, respectively. Different numbers of S. flexneri cells were used in controlled contamination experiments with several different foods (produce, beef, and apple cider). Aliquots from concentrated food washes subsequently spotted onto FTA filters and assayed by PCR gave consistently positive results and detection limits similar to those observed with pure-culture dilutions. This universal method for PCR template preparation from bacterial cells is rapid and highly sensitive and reduces interference from food-associated inhibitors of PCR. In addition, its broad applicability eliminates the need for multiple methods for analysis of food matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号