首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA vaccination strategies against infectious diseases   总被引:14,自引:0,他引:14  
DNA immunisation represents a novel approach to vaccine and immunotherapeutic development. Injection of plasmid DNA encoding a foreign gene of interest can result in the subsequent expression of the foreign gene products and the induction of an immune response within a host. This is relevant to prophylactic and therapeutic vaccination strategies when the foreign gene represents a protective epitope from a pathogen. The recent demonstration by a number of laboratories that these immune responses evoke protective immunity against some infectious diseases and cancers provides support for the use of this approach. In this article, we attempt to present an informative and unbiased representation of the field of DNA immunisation. The focus is on studies that impart information on the development of vaccination strategies against a number of human and animal pathogens. Investigations that describe the mechanism(s) of protective immunity induced by DNA immunisation highlight the advantages and disadvantages of this approach to developing vaccines within a given system. A variety of systems in which DNA vaccination has resulted in the induction of protective immunity, as well as the correlates associated with these protective immune responses, will be described. Particular attention will focus on systems involving parasitic diseases. Finally, the potential of DNA immunisation is discussed as it relates to veterinary medicine and its role as a possible vaccine strategy against animal coccidioses.  相似文献   

2.
New strategies for cardiovascular gene therapy   总被引:1,自引:0,他引:1  
Cardiovascular diseases are among the major targets for gene therapy. Initially, clinical experiments of gene transfer of vascular endothelial growth factor (VEGF) improved vascularization and prevented the amputation in patients with critical leg ischemia. However, the majority of trials did not provide conclusive results and therefore further preclinical studies are required. Importantly, data indicate the necessity of regulated expression of angiogenic factors, particularly VEGF, to obtain the therapeutic effect. It is also suggested that the combined delivery of two or more genes may improve the formation of mature vasculature and therefore may be more effective in the amelioration of ischemia. Moreover, experimental approaches in animal models displayed the promise of gene transfer modulating the inflammatory processes and oxidant status of the cells. Particularly, the concept of preemptive gene therapy has been tested, and recent studies have demonstrated that overexpression of heme oxygenase-1 or extracellular superoxide dismutase can prevent heart injury by myocardial infarction induced several weeks after gene instillation. The combination of a preemptive strategy with regulated gene expression, using the vectors in which the therapeutic transgene is driven by exogenously or endogenously controllable promoter, offers another modality. However, we hypothesize that regulatable gene therapy, dependent on the activity of endogenous factors, might be prone to limitations owing to the potential disturbance in the expression of endogenous genes. Here, we demonstrated some indications of these drawbacks. Therefore, the final acceptance of these promising strategies for clinical trials requires careful validation in animal experiments.  相似文献   

3.
With the advent of the era of International Space Station (ISS) and Mars exploration, it is important more than ever to develop means to cure genetic and acquired diseases, which include cancer and AIDS, for these diseases hamper human activities. Thus, our ultimate goal is to develop protocols for gene therapy, which are suitable to humans on the earth as well as in space. Specifically, we are trying to cure the hemoglobinopathies, beta-thalassemia (Cooley's anemia) and sickle cell anemia, by gene therapy. These well-characterized molecular diseases serve as models for developing ex vivo gene therapy, which would apply to other disorders as well. For example, the procedure may become directly relevant to treating astronauts for space-anemia, immune suppression and bone marrow derived tumors, e.g. leukemia. The adeno-associated virus serotype 2 (AAV2) is a non-pathogenic human parvovirus with broad host-range and tissue specificity. Exploiting these characteristics we have been developing protocols for recombinant AAV2 (rAAV)-based gene therapy. With the rAAV constructs and hematopoietic stem cell (HSC) culture systems in hand, we are currently attempting to cure the mouse model of beta-thalassemia [C57BL/6- Hbbth/Hbbth, Hb(d-minor)] by HSC transplantation (HST) as well as by gene therapy. This paper describes the current status of our rAAV-gene therapy research.  相似文献   

4.
Concepts and strategies for human gene therapy.   总被引:6,自引:0,他引:6  
Methods of modern molecular genetics have been developed that allow stable transfer and expression of foreign DNA sequences in human and other mammalian somatic cells. It is therefore no surprise that the methods have been applied in attempts to complement genetic defects and correct disease phenotypes. Two decades of research have now led to the first clinically applicable attempts to introduce genetically modified cells into human beings to cure diseases caused at least partially by genetic defects. We discuss here some of the strategies being followed for both in vitro and in vivo application of therapeutic gene transfer and summarize some of the technical and conceptual difficulties associated with somatic-cell gene therapy.  相似文献   

5.
Gene therapy is a new medical approach for the treatment of tumors. For safe and efficient gene therapy, therapeutic genes need to be delivered efficiently into the target tumor cells. Development of gene delivery systems to specifically recognize and target tumor cells and to distinguish them from normal cells, especially in the same tissue or organ, is one of the most important issues regarding the present gene delivery methodologies. The enhanced permeability and retention (EPR) effect using the characteristics of angiogenic tumor blood vessels, as well as gene delivery systems recognizing hyperactivated receptors or intracellular signals, is broadly applied to tumor-targeted gene therapy. In addition, bacterial vectors can be a useful means for targeting hypoxic or anoxic regions of a tumor.  相似文献   

6.
The application of modern molecular techniques has profoundly influenced our understanding of virus function. As a consequence, virus biology is being directly applied to medical research. It is a reflection of the current pace of virology that we are now beginning to think of our ancient foes as useful and beneficial tools.  相似文献   

7.
Conventional treatment approaches for malignant tumors are highly invasive and sometimes have only a palliative effect. Therefore, there is an increasing demand to develop novel, more efficient treatment options. Increased efforts have been made to apply immunomodulatory strategies in antitumor treatment. In recent years, immunizations with naked plasmid DNA encoding tumor-associated antigens have revealed a number of advantages. By DNA vaccination, antigen-specific cellular as well as humoral immune responses can be generated. The induction of specific immune responses directed against antigens expressed in tumor cells and displayed e.g., by MHC class I complexes can inhibit tumor growth and lead to tumor rejection. The improvement of vaccine efficacy has become a critical goal in the development of DNA vaccination as antitumor therapy. The use of different DNA delivery techniques and coadministration of adjuvants including cytokine genes may influence the pattern of specific immune responses induced. This brief review describes recent developments to optimize DNA vaccination against tumor-associated antigens. The prerequisite for a successful antitumor vaccination is breaking tolerance to tumor-associated antigens, which represent "self-antigens." Currently, immunization with xenogeneic DNA to induce immune responses against self-molecules is under intensive investigation. Tumor cells can develop immune escape mechanisms by generation of antigen loss variants, therefore, it may be necessary that DNA vaccines contain more than one tumor antigen. Polyimmunization with a mixture of tumor-associated antigen genes may have a synergistic effect in tumor treatment. The identification of tumor antigens that may serve as targets for DNA immunization has proceeded rapidly. Preclinical studies in animal models are promising that DNA immunization is a potent strategy for mediating antitumor effects in vivo. Thus, DNA vaccines may offer a novel treatment for tumor patients. DNA vaccines may also be useful in the prevention of tumors with genetic predisposition. By DNA vaccination preventing infections, the development of viral-induced tumors may be avoided.  相似文献   

8.
The construction of non-viral, virus-like vehicles for gene therapy involves the functionalization of multipartite constructs with nucleic acid-binding, cationic agents. Short basic peptides, alone or as fusion proteins, are appropriate DNA binding and condensing elements, whose incorporation into gene delivery vehicles results in the formation of protein–DNA complexes of appropriate size for cell internalization and intracellular trafficking. We review here the most used cationic peptides for artificial virus construction as well as the recently implemented strategies to control the architecture and biological activities of the resulting nanosized particles.  相似文献   

9.
10.
The biological attack conducted through the US postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain US Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine’s reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies.  相似文献   

11.
病毒--基因治疗中有效的载体系统   总被引:4,自引:0,他引:4  
基因治疗面临的首要问题是如何选择适当的基因载体将具有治疗价值的基因导入靶细胞并使其有效表达,以达到治疗疾病的目的。目前基因治疗临床试验中采用的载体大多数为病毒载体。本文主要介绍基因治疗中常用的4种病毒载体的生物学特性,以及各个载体在基因治疗中的优缺点。  相似文献   

12.
13.
DNA nanoparticles and development of DNA delivery vehicles for gene therapy   总被引:16,自引:0,他引:16  
Vijayanathan V  Thomas T  Thomas TJ 《Biochemistry》2002,41(48):14085-14094
DNA transport through the cell membrane is an essential requirement for gene therapy, which utilizes oligonucleotides and plasmid DNA. However, membrane transport of DNA is an inefficient process, and the mechanism(s) by which this process occurs is not clear. Although viral vectors are effective in gene therapy, the immune response elicited by viral proteins poses a major problem. Therefore, several laboratories are involved in the development of nonviral DNA delivery vehicles. These vehicles include polyamines, polycationic lipids, and neutral polymers, capable of condensing DNA to nanoparticles with radii of 20-100 nm. Although the structural and energetic forces involved in DNA condensation have been studied by physical biochemists for the past 25 years, this area has experienced a resurgence of interest in recent years because of the influx of biotechnologists involved in developing gene therapy protocols to combat a variety of human diseases. Despite an intense effort to study the mechanism(s) of DNA condensation using a variety of microscopic, light scattering, fluorescence, and calorimetric techniques, the precise details of the energetics of DNA nanoparticle formation and their packing assembly are not known at present. Future studies aimed at defining the mechanism(s) of DNA compaction and structural features of DNA nanoparticles might aid in the development of novel gene delivery vehicles.  相似文献   

14.
S L Woo  A G DiLella  J Marvit  F D Ledley 《Enzyme》1987,38(1-4):207-213
Mutations in the human phenylalanine hydroxylase gene associated with two prevalent mutant alleles have been identified and shown to be in linkage disequilibrium with the corresponding mutant restriction fragment length polymorphism haplotypes. These results suggest the possibility of carrier detection in the population without a prior family history of phenylketonuria (PKU). Furthermore, recombinant retroviruses containing the full-length human phenylalanine hydroxylase cDNA have been constructed and used to transduce functional enzymatic activity into cultured hepatoma cells. Together with the recent success in retroviral infection of primary mouse hepatocytes, it will be possible to use the mouse model to investigate somatic gene therapy for PKU.  相似文献   

15.
16.
Envisioning future strategies for vaccination against tuberculosis   总被引:1,自引:0,他引:1  
The design of tuberculosis vaccines has entered a new era. Although several new vaccine candidates will pass Phase I clinical trials within the next year, I believe that the most effective vaccination strategy will be to combine different vaccine candidates and to use a prime-boost approach. This strategy, however, would require several years of iterative vaccine trials, unless the process is expedited by the identification of reliable biomarkers for assessing vaccine efficacy. In this Essay, I briefly summarize past and present attempts to develop a vaccine against tuberculosis, and I describe, using imagined scenarios, the tuberculosis vaccination schemes that might become available from a large repertoire of candidate schemes in the near and distant future.  相似文献   

17.
The ever-evolving understanding of the neuronal systems involved in Parkinson's disease together with the recent advances in recombinant viral vector technology has led to the development of several gene therapy applications that are now entering into clinical testing phase. To date, four fundamentally different approaches have been pursued utilizing recombinant adeno-associated virus and lentiviruses as vectors for delivery. These strategies aim either to restore the lost brain functions by substitution of enzymes critical for synthesis of neurotransmitters or neurotrophic factors as a means to boost the function of remaining neurons in the diseased brain. In this review we discuss the differences in mechanism of action and describe the scientific rationale behind the currently tested gene therapy approaches for Parkinson's disease in some detail and pinpoint their individual unique strengths and weaknesses.  相似文献   

18.
Interest in producing large quantities of supercoiled plasmid DNA has recently increased as a result of the rapid evolution of gene therapy and DNA vaccines. Owing to the commercial interest in these approaches, the development of production and purification strategies for gene-therapy vectors has been performed in pharmaceutical companies within a confidential environment. Consequently, the information on large-scale plasmid purification is scarce and usually not available to the scientific community. This article reviews downstream operations for the large-scale purification of plasmid DNA, describing their principles and the strategy used to attain a final product that meets specifications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号