首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Main olfactory receptor genes were isolated from a seawater fish, Fugu rubripes (pufferfish), and characterized. Two subfamilies of genes encoding seven transmembrane receptors were identified; one consists of five or more members, termed FOR1-1 to 5 of FOR1 subfamily, and the other appears to be a single copy gene, termed the FOR2 subfamily. FOR1 members show extremely high amino acid sequence similarities of about 95% to one another, and are distantly related to catfish-1 with the highest similarity of 37%. FOR2 shows 43% similarity to goldfish-A28. Phylogenically, both FOR members are categorized among pedigrees of the fish main olfactory receptor family outside the mammalian receptor family, although similarities between Fugu receptors and those of fresh-water fishes are lower than those among fresh-water fishes. In situ hybridization shows that both subfamilies of receptor genes are expressed randomly over the olfactory epithelium throughout all developmental stages, and no segregation of the signals was found. On the other hand, when three members of a vomeronasal olfactory receptor gene family, related to the Ca(2+)-sensing receptor, were used as probes, they were also randomly expressed over the same epithelium as the main olfactory receptors. This is in contrast to the expression profiles observed for zebrafish and goldfish, where the main or vomeronasal olfactory receptors are expressed in segregated patterns. It is thus suggested that the expression pattern of fish olfactory receptors varies depending on the species, although fish olfactory receptors are highly related to one another in their primary structures, and are phylogenically distinct from those of mammals.  相似文献   

2.
3.
4.
The identification of C-type lectin (Group V) natural killer (NK) cell receptors in bony fish has remained elusive. Analyses of the Fugu rubripes genome database failed to identify Group V C-type lectin domains (Zelensky and Gready, BMC Genomics 5:51, 2004) suggesting that bony fish, in general, may lack such receptors. Numerous Group II C-type lectin receptors, which are structurally similar to Group V (NK) receptors, have been characterized in bony fish. By searching the zebrafish genome database we have identified a multi-gene family of Group II immune-related, lectin-like receptors (illrs) whose members possess inhibiting and/or activating signaling motifs typical of Group V NK receptors. Illr genes are differentially expressed in the myeloid and lymphoid lineages, suggesting that they may play important roles in the immune functions of multiple hematopoietic cell lineages.  相似文献   

5.
Jones AK  Elgar G  Sattelle DB 《Genomics》2003,82(4):441-451
Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission at nerve-muscle junctions and in the brain. However, the complete gene family of nAChRs has not so far been reported for any vertebrate organism. We have identified the complete nAChR gene family from the reference genome of the pufferfish, Fugu rubripes. It consists of 16 alpha and 12 non-alpha candidate subunits, making it the largest vertebrate nAChR gene family known to date. The gene family includes an unusual set of muscle-like nAChR subunits comprising two alpha1s, two beta1s, one delta, one epsilon, and one gamma. One of the beta1 subunits possesses an aspartate residue and N-glycosylation sites hitherto shown to be necessary for delta-subunit function. Potential Fugu orthologs of neuronal nAChR subunits alpha2-4, alpha6, and beta2-4 have been identified. Interestingly, the Fugu alpha5 counterpart appears to be a non-alpha subunit. Fugu possesses an expanded set of alpha7-9-like subunits and no alpha10 ortholog has been found. Two new candidate beta subtypes, designated beta5 and beta6, may represent subunits yet to be found in the human genome. The Fugu nAChR gene structures are considerably more diverse than those of higher vertebrates, with evidence of "intron gain" in many cases. We show, using RT-PCR, that the Fugu nAChR subunits are expressed in a variety of tissues.  相似文献   

6.
Williams H  Brenner S  Venkatesh B 《Gene》2002,295(2):255-264
The receptors for the platelet-derived growth factor (PDGFRalpha and PDGFRbeta) belong to a subfamily of protein tyrosine kinase receptors that also includes kit and the colony stimulating factor-1 receptor (CSF1R). In mammals, the genes encoding PDGFRalpha and PDGFRbeta are tandemly linked to the kit and CSF1R genes, respectively. Based on the structural similarity and genomic organization of these four genes, it has been suggested that they arose from an ancestral protein tyrosine kinase receptor gene by two rounds of duplication. We have previously cloned the PDGFRbeta and CSF1R genes from the pufferfish, Fugu rubripes, and shown that they are tandemly linked like the mammalian genes [Genome Res. 6 (1996) 1185]. We have now cloned two additional members of this gene family, fPDGFRbeta2 and fCSF1R2 from the fugu and shown that these two genes are also tandemly linked. This indicates that the PDGFRbeta-CSF1R locus has been duplicated in the lineage leading to fugu. The fugu fPDGFRbeta2 and fCSF1R2 genes contain three and one extra introns, respectively, compared with other members of this family. Polymerase chain reaction cloning of a conserved region of PDGFRbeta gene from other ray-finned fishes identified two copies in the zebrafish (order Cypriniformes) and sunfish (order Tetraodontiformes). These results are discussed in the context of the proposed teleost lineage-specific whole genome duplication hypothesis.  相似文献   

7.
8.
A prerequisite to understanding the evolution of the human X chromosome is the analysis of synteny of X-linked genes in different species. We have focused on the spermine synthase gene in human Xp22. 1. We show that whereas the human gene spans a genomic region of 54 kb, the Fugu rubripes gene is encompassed in a 4.7-kb region. However, we could not find conserved synteny between this region of human Xp22 and the equivalent F. rubripes region. A cosmid clone containing the F. rubripes gene does not contain other X-linked genes. Instead we identified homologs of human genes that are autosomally localized: the ryanodine receptor type I (RYRI), which is implicated in malignant hyperthermia and central core disease, and the HE6 gene. Comparison of the F. rubripes, Tetraodon fluviatilis, mouse, human, and Danio rerio 5'UTRs of spermine synthase highlights conserved sequences potentially involved in regulation. Interestingly, pseudogenes of this gene that are present in the human and mouse genomes seem to be absent in the compact F. rubripes genome. Analysis of a D. rerio PAC clone containing spermine synthase shows an intermediate genomic size in this fish. Sequence analysis of this PAC clone did not reveal other known genes: neither the RYRI gene, nor the HE6 gene, nor other human Xp22 genes were identified.  相似文献   

9.
Elphick MR  Satou Y  Satoh N 《Gene》2003,302(1-2):95-101
The G-protein coupled cannabinoid receptors CB(1) and CB(2) are activated by Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of cannabis, and mediate physiological effects of endogenous cannabinoids ('endocannabinoids'). CB(1) genes have been identified in mammals, birds, amphibians and fish, whilst CB(2) genes have been identified in mammals and in the puffer fish Fugu rubripes. Therefore, both CB(1) and CB(2) receptors probably occur throughout the vertebrates. However, cannabinoid receptor genes have yet to be identified in any invertebrate species and the evolutionary origin of cannabinoid receptors is unknown. Here we report the identification of CiCBR, a G-protein coupled receptor in a deuterostomian invertebrate - the urochordate Ciona intestinalis - that is orthologous to vertebrate cannabinoid receptors. The CiCBR cDNA encodes a protein with a predicted length (423 amino-acids) that is the intermediate of human CB(1) (472 amino-acids) and human CB(2) (360-amino-acid) receptors. Interestingly, the protein-coding region of the CiCBR gene is interrupted by seven introns, unlike in vertebrate cannabinoid receptor genes where the protein-coding region is typically intronless. Phylogenetic analysis revealed that CiCBR forms a clade with vertebrate cannabinoid receptors but is positioned outside the CB(1) and CB(2) clades of a phylogenetic tree, indicating that the common ancestor of CiCBR and vertebrate cannabinoid receptors predates a gene (genome) duplication event that gave rise to CB(1)- and CB(2)-type receptors in vertebrates. Importantly, the discovery of CiCBR and the absence of orthologues of CiCBR in protostomian invertebrates such as Drosophila melanogaster and Caenorhabditis elegans indicate that the ancestor of vertebrate CB(1) and CB(2) cannabinoid receptors originated in a deuterostomian invertebrate.  相似文献   

10.
The ribosomal protein RpL14 gene has been characterized in several species, including, human, rat and fruit fly. Haploinsufficiency for the gene causes the Minute phenotype in Drosophila, and it has been proposed as a regulator in the tumorigenic pathway in human. Several features concerning the gene structure have been studied, and some of these differ between human/rat and Drosophila. To address functional and evolutionary questions about these differences we have isolated and sequenced a cDNA and a genomic clone covering the RpL14 gene from the pufferfish Takifugu rubripes (Fugu). The Fugu RpL14 gene is approximately 2 Kb, with 5 introns, and encodes a protein of 137 amino acids. The protein contains a KOW-motif and a nuclear localization signal, which are conserved among a wide range of RPL14 proteins. On the other hand, a variable amino acid (alanine) repeat observed in human is missing in Takifugu rubripes, and the protein is shorter than its mammalian counterparts. Compared with human, the RpL14 gene in Fugu contains introns localized at identical positions in the gene, and most of them are shorter. A comparison of the RpL14 gene structure from a broad range of organisms indicates that both loss and gain of introns have occurred during the evolution of the gene.  相似文献   

11.
12.
13.
Zebrafish are an excellent genetic model system for studying developmental and physiological processes. Pigment patterns in zebrafish are affected by mutations in three types of chromatophores. The behavior of these cells is influenced by alpha-melanocyte-stimulating hormone (alphaMSH) and melanin-concentrating hormone (MCH). Mammals have five alphaMSH receptors (melanocortin receptors) and one or two MCH receptors. We have identified the full complement of melanocortin and MCH receptors in both zebrafish and the pufferfish, Fugu. Zebrafish have six melanocortin receptors, including two MC5R orthologues, while Fugu, lacking MC3R, has only four. We also demonstrate that Fugu and zebrafish have two and three MCHR genes, respectively. MC2R and MC5R are physically linked in all species examined. Unlike other species, we find the Fugu genes contain introns, one of which is in a conserved location and is probably ancestral. We also detail the differential expression of the zebrafish genes throughout development.  相似文献   

14.
The tyrosinase gene family encompasses three members, tyrosinase, tyrosinase-related protein 1 (Tyrp1) and dopachrome tautomerase (Dct), which encode for proteins implicated in melanin synthesis. In human and mouse, genomic organization is known for all three genes, revealing common features of regulatory elements and of exon/intron structure. We have set out to identify the complete family from a more primitive vertebrate, the pufferfish Fugu (Takifugu rubripes), which is characterized by a compact genome. We had recently isolated and characterized the Fugu tyrosinase gene (Genesis 28 (2000) 99-105). We now report the isolation and characterization of the two other members of the family, Tyrp1 and Dct. Regulatory sequences from these genes function in mouse pigment cells and are able to mediate reporter gene expression. Our results demonstrate the existence of all three tyrosinase family members in teleosts and underline the evolutionary conservation of the pigmentary system.  相似文献   

15.
The G-protein-coupled melanocortin receptors (MCRs) play an important role in a variety of essential functions such as the regulation of pigmentation, energy homeostasis, and steroid production. We performed a comprehensive characterization of the MC system in Fugu (Takifugu rubripes). We show that Fugu has an AGRP gene with high degree of conservation in the C-terminal region in addition to a POMC gene lacking gamma-MSH. The Fugu genome contains single copies of four MCRs, whereas the MC3R is missing. The MC2R and MC5R are found in tandem and remarkably contain one and two introns, respectively. We suggest that these introns were inserted through a reverse splicing mechanism into the DRY motif that is widely conserved through GPCRs. We were able to assemble large blocks around the MCRs in Fugu, showing remarkable synteny with human chromosomes 16 and 18. Detailed pharmacological characterization showed that ACTH had surprisingly high affinity for the Fugu MC1R and MC4R, whereas alpha-MSH had lower affinity. We also showed that the MC2R gene in Fugu codes for an ACTH receptor, which did not respond to alpha-MSH. All the Fugu receptors were able to couple functionally to cAMP production in line with the mammalian orthologs. The anatomical characterization shows that the MC2R is expressed in the brain in addition to the head-kidney, whereas the MC4R and MC5R are found in both brain regions and peripheral tissues. This is the first comprehensive genomic and functional characterization of a GPCR family within the Fugu genome. The study shows that some parts of the MC system are highly conserved through vertebrate evolution, such as regions in POMC coding for ACTH, alpha-MSH, and beta-MSH, the C-terminal region of AGRP, key binding units within the MC1R, MC2R, MC4R, and MC5R, synteny blocks around the MCRs, pharmacological properties of the MC2R, whereas other parts in the system are either missing, such as the MC3R and gamma-MSH, or different as compared to mammals, such as the affinity of ACTH and MSH peptides to MC1R and MC4R and the anatomical expression pattern of the MCRs.  相似文献   

16.
17.
18.
We have characterized pufflectin, a novel mannose-specific lectin, from the skin mucus of the pufferfish, Fugu rubripes. Molecular mass estimations by gel filtration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry and the SDS-PAGE pattern suggest that pufflectin is a homodimer composed of non-covalently associated subunits of 13 kDa. The full-length pufflectin cDNA consists of 527 bp, with 116 amino acid residues deduced from the open reading frame. The amino acid sequence of pufflectin shows no homology with any known animal lectin. Surprisingly, pufflectin shares sequence homology with mannose-binding lectins of monocotyledonous plants and has conserved two of three carbohydrate recognition domains of these plant lectins. The pufflectin gene is expressed in gills, oral cavity wall, esophagus, and skin. In addition, an isoform occurs exclusively in the intestine. Pufflectin differs from mannose-binding lectins purified from the blood plasma of Fugu. Whereas pufflectin did not agglutinate five bacterial species tested, it was demonstrated to bind to the parasitic trematode, Heterobothrium okamotoi. This finding suggests that pufflectin contributes to the parasite-defense system in Fugu.  相似文献   

19.
Genes related to the Drosophila melanogaster doublesex and Caenorhabditis elegans mab-3 genes are conserved in human. They are identified by a DNA-binding homology motif, the DM domain, and constitute a gene family (DMRTs). Unlike the invertebrate genes, whose role in the sex-determination process is essentially understood, the function of the different vertebrate DMRT genes is not as clear. Evidence has accumulated for the involvement of DMRT1 in male sex determination and differentiation. DMRT2 (known as terra in zebrafish) seems to be a critical factor for somitogenesis. To contribute to a better understanding of the function of this important gene family, we have analyzed DMRT1, DMRT2, and DMRT3 from the genome model organism Fugu rubripes and the medakafish, a complementary model organism for genetics and functional studies. We found conservation of synteny of human chromosome 9 in F. rubripes and an identical gene cluster organization of the DMRTs in both fish. Although expression analysis and gene linkage mapping in medaka exclude a function for any of the three genes in the primary step of male sex determination, comparison of F. rubripes and human sequences uncovered three putative regulatory regions that might have a role in more downstream events of sex determination and human XY sex reversal.  相似文献   

20.
D J Bolland  J E Hewitt 《Gene》2001,271(1):43-49
The human SART1 gene was initially identified in a screen for proteins recognised by IgE, which may be implicated in atopic disease. We have examined the genomic structure and cDNA sequence of the SART1 gene in the compact genomes of the pufferfish Fugu rubripes and Tetraodon nigroviridis. The entire coding regions of both the Fugu and Tetraodon SART1 genes are contained within single exons. The Fugu gene contains only one intron located in the 5' untranslated region. Southern blot hybridisation of Fugu genomic DNA confirmed the SART1 gene to be single copy. Partial genomic structures were also determined for the human, mouse, Drosophila and C. elegans SART1 homologues. The human and mouse genes both contain many introns in the coding region, the human gene possessing at least 20 exons. The Drosophila and C. elegans homologues contain 6 and 12 exons, respectively. This is only the second time such a difference in the organization of homologous Fugu and human genes has been reported. The Fugu and Tetraodon SART1 genes encode putative proteins of 772 and 774 aa, respectively, each having 65% amino acid identity to human SART1. Leucine zipper and basic motifs are conserved in the predicted Fugu and Tetraodon proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号