首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nutritional auxotrophs of Escherichia coli synthesize vitamin B(6) compounds at a rate of 1 x 10(-10) to 2 x 10(-10) moles per hr per mg (dry weight) of cells when they are suspended in minimal medium lacking their required nutrients. A few auxotrophs have been found to stop or reduce vitamin B(6) synthesis during such an experiment. These include thiamineless, citrate synthaseless, and pyridoxineless mutants as well as mutants which require four carbon compounds for growth. Glycolaldehyde was found to restore vitamin B(6) synthesis in the last named of these mutants without restoring normal growth. A class of pyridoxineless mutants which responded with normal growth to 0.4 mm glycolaldehyde or 0.15 x 10(-3) mm pyridoxol was also found. The results suggest that a thiamine pyrophosphate-requiring step as well as glycolaldehyde may be involved in pyridoxal phosphate biosynthesis.  相似文献   

2.
3.
Pyridoxineless mutants of Escherichia coli B which specifically require pyridoxal or pyridoxamine for growth can be divided into classes according to their growth responses in enriched media. Members of the slowest growing class synthesize vitamin B(6) at the fastest rates when starved for pyridoxal in glycerol minimal medium. After 80 min of synthesis at 4 x 10(-10) moles of vitamin B(6) per mg of cells per hr, the rate increases four- to fivefold and continues at the new rate for several hours. The shift to the new rate is prevented by chloramphenicol, thus suggesting that a derepression mechanism exists to control vitamin B(6) synthesis in addition to the previously discovered feedback control.  相似文献   

4.
Purification and properties of vitamin B6 kinase from Escherichia coli B   总被引:5,自引:0,他引:5  
R S White  W B Dempsey 《Biochemistry》1970,9(21):4057-4064
  相似文献   

5.
Vitamin B6 is an essential metabolite in all organisms, being required as a cofactor for a wide variety of biochemical reactions. De novo biosynthesis of the vitamin occurs in microorganisms and plants, but animals must obtain it from their diet. Two distinct and mutually exclusive de novo pathways have been identified to date, namely deoxyxylulose 5-phosphate dependent, which is restricted to a subset of eubacteria, and deoxyxylulose 5-phosphate independent, present in archaea, fungi, plants, protista, and most eubacteria. In these organisms, pyridoxal 5'-phosphate (PLP) formation is catalyzed by a single glutamine amidotransferase (PLP synthase) composed of a glutaminase domain, PDX2, and a synthase domain, PDX1. Despite plants being an important source of vitamin B6, very little is known about its biosynthesis. Here, we provide information for Arabidopsis thaliana. The functionality of PDX2 is demonstrated, using both in vitro and in vivo analyses. The expression pattern of PDX2 is assessed at both the RNA and protein level, providing insight into the spatial and temporal pattern of vitamin B6 biosynthesis. We then provide a detailed biochemical analysis of the plant PLP synthase complex. While the active sites of PDX1 and PDX2 are remote from each other, coordination of catalysis is much more pronounced with the plant proteins than its bacterial counterpart, Bacillus subtilis. Based on a model of the PDX1/PDX2 complex, mutation of a single residue uncouples enzyme coordination and in turn provides tangible evidence for the existence of the recently proposed ammonia tunnel through the core of PDX1.  相似文献   

6.
7.
8.
Mycolic acids are a key component of the mycobacterial cell wall, providing structure and forming a major permeability barrier. In Mycobacterium tuberculosis mycolic acids are synthesized by type I and type II fatty acid synthases. One of the enzymes of the type II system is encoded by fabG1. We demonstrate here that this gene can be deleted from the M. tuberculosis chromosome only when another functional copy is provided elsewhere, showing that under normal culture conditions fabG1 is essential. FabG1 activity can be replaced by the corresponding enzyme from the closely related species Mycobacterium smegmatis but not by the enzyme from Escherichia coli. M. tuberculosis carrying FabG from M. smegmatis showed no phenotypic changes, and both the mycolic acids and cell wall permeability were unchanged. Thus, M. tuberculosis and M. smegmatis enzymes are interchangeable and do not control the lengths and types of mycolic acids synthesized.  相似文献   

9.
10.
11.
Sixty-two point mutations were isolated in Escherichia coli by means of transduction with mutagenized phage P1. Twenty-two deletions extending into cysB but able to recombine with at least some of the point mutations were isolated on a transmissible E. coli plasmid. Mapping of the point mutations against the deletions divided the former into 16 deletion groups. Nine merodiploids were constructed in which the chromosome carried one of the three point mutations most distal to the trp operon and in which a plasmid carried one of the three point mutations most proximal to the trp operon. All of these showed a Cys-phenotype. It follows that mutations at the two extreme ends of the region belong to the same complementation group.  相似文献   

12.
The biosynthetic pathway for staphyloxanthin, a C(30) carotenoid biosynthesized by Staphylococcus aureus, has previously been proposed to consist of five enzymes (CrtO, CrtP, CrtQ, CrtM, and CrtN). Here, we report a missing sixth enzyme, 4,4'-diaponeurosporen-aldehyde dehydrogenase (AldH), in the staphyloxanthin biosynthetic pathway and describe the functional expression of the complete staphyloxanthin biosynthetic pathway in Escherichia coli. When we expressed the five known pathway enzymes through artificial synthetic operons and the wild-type operon (crtOPQMN) in E. coli, carotenoid aldehyde intermediates such as 4,4'-diaponeurosporen-4-al accumulated without being converted into staphyloxanthin or other intermediates. We identified an aldH gene located 670 kilobase pairs from the known staphyloxanthin gene cluster in the S. aureus genome and an aldH gene in the non-staphyloxanthin-producing Staphylococcus carnosus genome. These two putative enzymes catalyzed the missing oxidation reaction to convert 4,4'-diaponeurosporen-4-al into 4,4'-diaponeurosporenoic acid in E. coli. Deletion of the aldH gene in S. aureus abolished staphyloxanthin biosynthesis and caused accumulation of 4,4'-diaponeurosporen-4-al, confirming the role of AldH in staphyloxanthin biosynthesis. When the complete staphyloxanthin biosynthetic pathway was expressed using an artificial synthetic operon in E. coli, staphyloxanthin-like compounds, which contained altered fatty acid acyl chains, and novel carotenoid compounds were produced, indicating functional expression and coordination of the six staphyloxanthin pathway enzymes.  相似文献   

13.
14.
Abstract A Saccharomyces cerevisiae gene for trehalose-6-phosphate synthase (TPS1) was sequenced. The gene appeared to code for a protein of 495 amino acid residues, giving the protein a molecular mass of 56 kDa. The TPS1 gene was able to restore both osmotolerance and trehalose accumulation during salt stress in an Escherichia coli strain mutated in the otsA gene encoding trehalose-6-phosphate synthase. Complementation studies with E. coli galU mutants showed that the TPS1-encoded trehalose-6-phosphate synthase is UDP-glucose-dependent. Sequence analysis and data base searches showed that TPS1 is allelic to GGS1, byp1, cif1 and fdp1 . A possible gene for trehalose-6-phosphate synthase in Methanobacterium thermoautotrophicum was identified.  相似文献   

15.
We characterized several unusual phenotypes caused by stable insertion mutations in a gene that is located upstream in the same operon from hisT, which encodes the tRNA modification enzyme pseudouridine synthase I. Mutants containing kanamycin resistance (Kmr) cassettes in this upstream gene, which we temporarily designated usg-2, failed to grow on minimal plus glucose medium at 37 and 42 degrees C. However, usg-2::Kmr mutants did form oddly translucent, mucoid colonies at 30 degrees C or below. Microscopic examination revealed that cells from these translucent colonies were spherical and seemed to divide equatorially. Addition of D-alanine restored the shape of the mutant cells to rods and allowed the mutants to grow slowly at 37 degrees C and above. By contrast, addition of the common L-amino acids prevented growth of the usg-2::Kmr mutants, even at 30 degrees C. Furthermore, prolonged incubation of usg-2::Kmr mutants at 37 and 42 degrees C led to the appearance of several classes of temperature-resistant pseudorevertants. Other compounds also supported growth of usg-2::Kmr mutants at 37 and 42 degrees C, including glycolaldehyde and the B6 vitamers pyridoxine and pyridoxal. This observation suggested that usg-2 was pdxB, which had been mapped near hisT. Complementation experiments confirmed that usg-2 is indeed pdxB, and inspection of the pyridoxine biosynthetic pathway suggests explanations for the unusual phenotypes of pdxB::Kmr mutants. Finally, Southern hybridization experiments showed that pdxB and hisT are closely associated in several enterobacterial species. We consider reasons for grouping pdxB and hisT together in the same complex operon and speculate that these two genes play roles in the global regulation of amino acid metabolism.  相似文献   

16.
17.
The uptake of (60)Co-labeled cyanocobalamin (vitamin B(12)) by cells of Escherichia coli K-12lambda was shown to consist of an initial rapid phase (complete in <1 min), followed by a slower secondary phase. Methods enabling the measurement of (60)Co-B(12) uptake after incubation times of 1 to 2 sec were used in studies on the initial rate of B(12) uptake. This initial process showed saturation kinetics, with a V(max) of 56 molecules per sec per cell and a K(m) of 5 nm, and was essentially independent of cellular energy metabolism. No inhibition was obtained with cyanide, fluoride, arsenite, or 2, 4-dinitrophenol, and an energy of activation of 3.8 kcal/mole for this initial phase of uptake was calculated from its response to temperature changes between 15 and 35 C. The inhibition by HgCl(2) (50% at 0.1 mm) but not by 1 mmN-ethylmaleimide or 1 mmp-chloromercuribenzoate was consistent with a role for a relatively inaccessible sulfhydryl residue at the initial B(12) binding site. The secondary phase of B(12) uptake was clearly dependent on the energy metabolism of the cell, and, from its response to temperature, an energy of activation of about 17 kcal/mole was calculated. Cyanide (10 mm), arsenite (10 mm), and 2, 4-dinitrophenol (0.1 mm) gave at least 70% inhibition of the rate of the secondary phase. The formation of other cobalamins, such as 5'-deoxyadenosyl cobalamin, was not an obligate part of B(12) transport. The cells were also able to take up (60)Co-labeled cobinamide cyanide.  相似文献   

18.
19.
We have cloned and sequenced the Cercospora nicotianae gene for the carotenoid biosynthetic enzyme phytoene dehydrogenase. Analysis of the derived amino acid sequence revealed it has greater than 50% identity with its counterpart in Neurospora crassa and approximately 30% identity with prokaryotic phytoene dehydrogenases and is related, but more distantly, to phytoene dehydrogenases from plants and cyanobacteria. Our analysis confirms that phytoene dehydrogenase proteins fall into two groups: those from plants and cyanobacteria and those from eukaryotic and noncyanobacter prokaryotic microbes. Southern analysis indicated that the C. nicotianae phytoene dehydrogenase gene is present in a single copy. Extraction of beta-carotene, the sole carotenoid accumulated by C. nicotianae, showed that both light- and dark-grown cultures synthesize carotenoids, but higher levels accumulate in the light. Northern (RNA) analysis of poly(A)+ RNA, however, showed no differential accumulation of phytoene dehydrogenase mRNA between light- and dark-grown fungal cultures.  相似文献   

20.
This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3'-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号