首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Neural output from the locomotor system for each arm and leg influences the spinal motoneuronal pools directly and indirectly through interneuronal (IN) reflex networks. While well documented in other species, less is known about the functions and features of convergence in common IN reflex system from cutaneous afferents innervating different foot regions during remote arm and leg movement in humans. The purpose of the present study was to use spatial facilitation to examine possible convergence in common reflex pathways during rhythmic locomotor limb movements. Cutaneous reflexes were evoked in ipsilateral tibialis anterior muscle by stimulating (in random order) the sural nerve (SUR), the distal tibial nerve (TIB), and combined simultaneous stimulation of both nerves (TIB&SUR). Reflexes were evoked while participants performed rhythmic stepping and arm swinging movement with both arms and the leg contralateral to stimulation (ARM&LEG), with just arm movement (ARM) and with just contralateral leg movement (LEG). Stimulation intensities were just below threshold for evoking early latency (<80 ms to peak) reflexes. For each stimulus condition, rectified EMG signals were averaged while participants held static contractions in the stationary (stimulated) leg. During ARM&LEG movement, amplitudes of cutaneous reflexes evoked by combined TIB&SUR stimulation were significantly larger than simple mathematical summation of the amplitudes evoked by SUR or TIB alone. Interestingly, this extra facilitation seen during combined nerve stimulation was significantly reduced when performing ARM or LEG compared to ARM&LEG. We conclude that locomotor rhythmic limb movement induces excitation of common IN reflex pathways from cutaneous afferents innervating different foot regions. Importantly, activity in this pathway is most facilitated during ARM&LEG movement. These results suggest that transmission in IN reflex pathways is weighted according to the number of limbs directly engaged in human locomotor activity and underscores the importance of arm swing to support neuronal excitability in leg muscles.  相似文献   

2.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.  相似文献   

3.
Current concepts of the basic neural control system and its modulation by afferent inputs are reviewed. It is emphasized that, in analogy with locomotion, the central pattern generator (CPG) for automatic metabolic respiration does not depend on any afferent feedback from receptors sensitive to the movements of the "pump," or the streams of pumped air, for its production of a rhythmic motor output provides the CPG receives some "drive" inputs above threshold and adequate bias. The operation for a variety of reflexes and feedback loops is of fundamental importance, however, for adapting the breathing pattern to the varying requirements for gas exchange to the many behavioural, nonmetabolic demands on the breathing apparatus which are competing with its primary metabolic control functions. The presentation is focussed also on available evidence that the respiratory CPG exerts powerful modulations on the transmission in these reflex pathways controlling the pattern of breathing and adjusting it to the various metabolic and behavioural demands. Mechanisms for "gating," "phasic gain changes," and "phase-dependent reflex reversal" are exemplified.  相似文献   

4.
Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury.  相似文献   

5.
Locomotion of mammals, including humans, is based on the rhythmic activity of spinal cord circuitries. The functioning of these circuitries depends on multimodal afferent information and on supraspinal influences from the motor cortex. Using the method of transcranial magnetic stimulation (TMS) of arm muscle areas in the motor cortex, we studied the motor evoked potentials (MEP) in the upper arm muscles in stationary conditions and during voluntary and vibration-evoked arm movements. The study included 13 healthy subjects under arm and leg unloading conditions. In the first series of experiments, with motionless limbs, the effect of vibration of left upper arm muscles on motor responses in these muscles was evaluated. In the second series of experiments, MEP were compared in the same muscles during voluntary and rhythmic movements generated by left arm m. triceps brachii vibration (the right arm was stationary). Motionless left arm vibration led to an increase in MEP values in both vibrated muscle and in most of the non-vibrated muscles. For most target muscles, MEP was greater with voluntary arm movements than with vibration-evoked movements. At the same time, a similar MEP modulation in the cycle of arm movements was observed in the same upper arm muscles during both types of arm movements. TMS of the motor cortex significantly potentiated arm movements generated by vibration, but its effect on voluntary movements was weaker. These results indicate significant differences in the degree of motor cortex involvement in voluntary and evoked arm movements. We suppose that evoked arm movements are largely due to spinal rather than central mechanisms of generation of rhythmic movements.  相似文献   

6.
The effect of arm movements and movements of individual arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements was studied under the conditions of horizontal support of the upper and lower limbs. The horizontal support of arms provided a significant increase in the rate of activation of locomotor automatism by noninvasive impact on tonic sensory inputs. The addition of active arm movements during involuntary stepping-like leg movements led to an increase in the EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of knee and hip joints. At the same time, the movement of forearms and wrists had a similar facilitating effect on the physiological and kinematic characteristics of rhythmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of subthreshold vibration of leg muscles, voluntary arm movements led to activation of involuntary rhythmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhythmic stepping than during involuntary leg movements. Thus, the simultaneous movements of the upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries, Parkinson’s disease, and other neurological diseases.  相似文献   

7.
A key feature of successful motor control is the ability to counter unexpected perturbations. This process is complicated in multijoint systems, like the human arm, by the fact that loads applied at one joint will create motion at other joints [1-3]. Here, we test whether our most rapid corrections, i.e., reflexes, address this complexity through an internal model of the limb's mechanical properties. By selectively applying torque perturbations to the subject's shoulder and/or elbow, we revealed a qualitative difference between the arm's short-latency/spinal reflexes and long-latency/cortical reflexes. Short-latency reflexes of shoulder muscles were linked exclusively to shoulder motion, whereas its long-latency reflexes were sensitive to both shoulder and elbow motion, i.e., matching the underlying shoulder torque. In fact, a long-latency reflex could be evoked without even stretching or lengthening the shoulder muscle but by displacing just the elbow joint. Further, the shoulder's long-latency reflexes were appropriately modified across the workspace to account for limb-geometry changes that affect the transformation between joint torque and joint motion. These results provide clear evidence that long-latency reflexes possess an internal model of limb dynamics, a degree of motor intelligence previously reserved for voluntary motor control [3-5]. The use of internal models for both voluntary and reflex control is consistent with substantial overlap in their neural substrates and current notions of intelligent feedback control [6-8].  相似文献   

8.
During walking cutaneous stimulation of the foot yields neural and mechanical reflexes that serve a functional purpose to correct or assist the ongoing movement. Concurrently, while cutaneous stimulation of the hand during rhythmic arm movement parallel the neural responses observed in the legs, studies of rhythmic arm movement have only limited mechanical measurements. Therefore it is difficult to determine whether reflex responses in the arms during rhythmic arm movement serve a functional purpose similar to those seen in the lower limbs. The purpose of this study was to explore the mechanical outcomes of stimulating a cutaneous nerve innervating the hand during arm cycling. We hypothesized that there would be measurable mechanical effects to cutaneous stimulation during arm cycling that function to correct or assist the task of arm cycling. Specifically, kinetic responses measured at the handle would be considered assistive if they were tangential to the arm cycling path in the direction of forward progression. Also, limb kinematic responses would be considered corrective if they allowed limb movement that would result in removal of the limb from stimulus while not altering the kinetic profile at the handle necessary for arm cycling progression. Participants performed seated arm cycling while EMG was recorded from the arm and trunk muscles, kinematic data was recorded from the right arm, and kinetic data was recorded from the handle. Cutaneous reflexes were evoked by stimulating the superficial radial nerve. The results show that there are observable mechanical responses to cutaneous stimulation of the hand during arm cycling. Subjects responded to cutaneous stimulation of the hand during arm cycling with significant changes in backward and lateral forces at the handle as well as wrist abduction/adduction and wrist flexion/extension kinematics. These responses, related to the task and phase of movement, are consistent with the anatomical location of the stimulus and are correlated to the neural responses. Therefore, these responses are comparable to functionally relevant responses in the legs during rhythmic movement. However, while there is a single observation of a kinematic corrective strategy, the kinetics measured at the handle are not tangential to the arm cycling path and therefore not considered an assistive response. Therefore, unlike the observations in the lower limbs, the mechanical responses during arm cycling are not clearly related to the functional context of the ongoing task.  相似文献   

9.
In rhythmic movements, humans activate their muscles in a robust and energy efficient way. These activation patterns are oscillatory and seem to originate from neural networks in the spinal cord, called central pattern generators (CPGs). Evidence for the existence of CPGs was found for instance in lampreys, cats and rats. There are indications that CPGs exist in humans as well, but this is not proven yet. Energy efficiency is achieved by resonance tuning: the central nervous system is able to tune into the resonance frequency of the limb, which is determined by the local reflex gains. The goal of this study is to investigate if the existence of a CPG in the human spine can explain the resonance tuning behavior, observed in human rhythmic limb movement. A neuro-musculo-skeletal model of the forearm is proposed, in which a CPG is organized in parallel to the local reflexloop. The afferent and efferent connections to the CPG are based on clues about the organization of the CPG, found in literature. The model is kept as simple as possible (i.e., lumped muscle models, groups of neurons are lumped into half-centers, simple reflex model), but incorporates enough of the essential dynamics to explain behavior—such as resonance tuning—in a qualitative way. Resonance tuning is achieved above, at and below the endogenous frequency of the CPG in a highly non-linear neuro- musculo-skeletal model. Afferent feedback of muscle lengthening to the CPG is necessary to accomplish resonance tuning above the endogenous frequency of the CPG, while feedback of muscle velocity is necessary to compensate for the phase lag, caused by the time delay in the loop coupling the limb to the CPG. This afferent feedback of muscle lengthening and velocity represents the Ia and II fibers, which—according to literature—is the input to the CPG. An internal process of the CPG, which integrates the delayed muscle lengthening and feeds it to the half-center model, provides resonance tuning below the endogenous frequency. Increased co-contraction makes higher movement frequencies possible. This agrees with studies of rhythmic forearm movements, which have shown that co-contraction increases with movement frequency. Robustness against force perturbations originates mainly from the CPG and the local reflex loop. The CPG delivers an increasing part of the necessary muscle activation for increasing perturbation size. As far as we know, the proposed neuro-musculo-skeletal model is the first that explains the observed resonance tuning in human rhythmic limb movement.  相似文献   

10.
In vertebrates, possibly also in man, the pattern of activation of muscles during locomotion can be generated by the spinal cord (locomotor CPG, central pattern generator). However, sensory feedback is crucial to adapt the functioning of the CPG to the external requirements during gait. It is postulated that afferent input from skin and muscles can contribute to the EMG activation patterns as observed in various limb muscles during gait. The activity of the hamstrings at end swing may be partially due to stretch reflexes of these muscles. At end stance the hamstring activity may be assisted by reflexes from natural skin activation from the dorsum of the foot. In addition, more specific actions are also incorporated. For example, sural nerve stimulation induces an activation of biceps femoris (BF) whereas a suppression is usually obtained for semitendinosus (ST), indicating that the induced activation is aimed at exorotation of the lower leg. Similarly, the preferential activation of medial versus lateral gastrocnemius (GM versus GL) in sural nerve induced reflexes could favor such exorotation. It is concluded that the present evidence points towards a possible contribution of various reflexes to the motor output seen during gait for movements both inside and outside the sagittal plane.  相似文献   

11.
Coordinated arm and leg movements imply neural interactions between the rhythmic generators of the upper and lower extremities. In ten healthy subjects in the lying position, activity of the muscles of the upper and lower extremities was recorded during separate and joint cyclic movements of the arms and legs with different phase relationships between the movements of the limbs and under various conditions of the motor task. Antiphase active arm movements were characterized by higher muscle activity than during the inphase mode. The muscle activity during passive arm movements imposed by the experimentalist was significantly lower than muscle activity during passive arm movements imposed by the other arm. When loading one arm, the muscle activity in the other, passively moving, arm increased independently from the synergy of arm movements. During a motor task implementing joint antiphase movements of both upper and lower extremities, compared to a motor task implementing their joint in-phase movements, we observed a significant increase in activity in the biceps brahii muscle, the tibialis anterior muscle, and the biceps femoris muscle. Loading of arms in these motor tasks has been accompanied by increased activity in some leg muscles. An increase in the frequency of rhythmic movements resulted in a significant growth of the muscle activity of the arms and legs during their cooperative movements with a greater rate of rise in the flexor muscle activity of the arms and legs during joint antiphase movements. Thus, both the spatial organization of movements and the type of afferent influences are significant factors of interlimb interactions, which, in turn, determine the type of neural interconnections that are involved in movement regulation.  相似文献   

12.
Presynaptic inhibition of transmission between Ia afferent terminals and alpha motoneurons (Ia PSI) is a major control mechanism associated with soleus H-reflex modulation during human locomotion. Rhythmic arm cycling suppresses soleus H-reflex amplitude by increasing segmental Ia PSI. There is a reciprocal organization in the human nervous system such that arm cycling modulates H-reflexes in leg muscles and leg cycling modulates H-reflexes in forearm muscles. However, comparatively little is known about mechanisms subserving the effects from leg to arm. Using a conditioning-test (C-T) stimulation paradigm, the purpose of this study was to test the hypothesis that changes in Ia PSI underlie the modulation of H-reflexes in forearm flexor muscles during leg cycling. Subjects performed leg cycling and static activation while H-reflexes were evoked in forearm flexor muscles. H-reflexes were conditioned with either electrical stimuli to the radial nerve (to increase Ia PSI; C-T interval  = 20 ms) or to the superficial radial (SR) nerve (to reduce Ia PSI; C-T interval  = 37–47 ms). While stationary, H-reflex amplitudes were significantly suppressed by radial nerve conditioning and facilitated by SR nerve conditioning. Leg cycling suppressed H-reflex amplitudes and the amount of this suppression was increased with radial nerve conditioning. SR conditioning stimulation removed the suppression of H-reflex amplitude resulting from leg cycling. Interestingly, these effects and interactions on H-reflex amplitudes were observed with subthreshold conditioning stimulus intensities (radial n., ∼0.6×MT; SR n., ∼ perceptual threshold) that did not have clear post synaptic effects. That is, did not evoke reflexes in the surface EMG of forearm flexor muscles. We conclude that the interaction between leg cycling and somatosensory conditioning of forearm H-reflex amplitudes is mediated by modulation of Ia PSI pathways. Overall our results support a conservation of neural control mechanisms between the arms and legs during locomotor behaviors in humans.  相似文献   

13.
Electrophysiological and pharmacological analysis of L-Dopa-induced dyskinesia and tardive dyskinesia (L.DD) due to neuroleptics was performed on 12 patients with Parkinson's disease and on 12 others with psychotic diseases. This analysis included the examination of spinal reflexes, monosynaptic H reflex, polysynaptic cutaneous reflex of the lower limb, muscular responses to passive movement [stretch reflex and shortening reaction (SR)] and the study of the motor response to a dopaminergic stimulus (I.V. injection of Piribedil (PBD), a dopamine agonist). There was no difference in EMG activity between L.DD and TD. Three EMG patterns can be distinguished: anarchic discharge pattern (ADA), tonic grouping discharge pattern (AST) and rhythmic burst pattern (ABR). PBD effects indicate a possible relationship between the EMG patterns and the sensitivity level of the motor dopamine receptors. During L-Dopa dyskinesia and tardive dyskinesia, the same changes in spinal reflexes were observed. Muscle tone tested by muscular responses to passive movement (shortening and myotatic reaction) was normal. Monosynaptic excitability explored by H/M ratio was within the normal range. In contrast, the polysynaptic nociceptive reflex was increased in every case. In Parkinsonian patients with L-Dopa dyskinesia, this pattern of the spinal reflexes was significantly different in comparison to the rigid phase. Intravenous infusion of PBD suppressed tremor and provoked the occurrence of dyskinetic activity in Parkinsonian patients with L-Dopa dyskinesia during the rigid phase. During the dyskinetic phase, as in tardive dyskinesia, PBD increases these phenomena and changes EMG activity in rhythmic pattern. It is suggested that L-Dopa dyskinesia and tardive dyskinesia can be determined by testing EMG activity, spinal reflexes and dopaminergic reactivity. There is evidence to suggest that the various types of involuntary abnormal movement represent a single entity, and that dopamine receptor supersensitivity may be involved.  相似文献   

14.
Human soleus H reflexes are depressed with passive movement of the leg. We investigated the limb segment origin of this inhibition. In the first experiment, H reflexes were evoked in four subjects during (1) passive pedaling movement of the test leg at 60 rpm; (2 and 3) pedaling-like flexion and extension of the hip and the knee of the test leg separately; and (4) stationary controls. In the second experiment, with the test leg stationary, the same series of movements occurred in the opposite leg. Rotation of the hip or the knee of the test leg significantly reduced mean reflex amplitudes (p > 0.01) to levels similar to those for whole-leg movement (mean H reflexes: stationary, 71%; test leg pedaling movement, 10%; knee rotation, 15%; hip rotation, 13% [all data are given as percentages of Mmax]). The angle of the stationary joint did not significantly affect the results. Rotation of the contralateral hip significantly reduced mean reflex magnitudes. Rotation of the contralateral knee had a similar effect in three of the four subjects. We infer that a delimited field of receptors induces the movement conditioning of both the ipsilateral and contralateral spinal paths. It appears that somatosensory receptor discharge from movement of the hip or knee of either leg induces inhibition as the foundation for the modulation of H reflexes observed during human movement.  相似文献   

15.
This study was designed to examine the nature of neural circuits involved in subcortical inter-limb coordination and reflex modulation mechanisms of locomotion. These circuits, called central pattern generators (CPGs), are believed to receive tonic input and generate rhythmically alternating sets of commands. Although CPGs have been theorized to exist in humans, their potential dual role in inter-limb coordination and reflex modulation is unclear. In the present study, nine participants walked on a treadmill, timing their heel-strikes to a metronome which varied the phase lag from 0.5 to 1.0 pi radians (0.1 pi intervals). A stimulus was delivered to the sural nerve and reflexes were measured in the ipsilateral and contralateral lower extremities through electromyography. The similarity between phase lag conditions for both temporal coordination (i.e., relative timing aspects between muscles and/or limbs) and reflex intensities suggested that they may be controlled by the same subcortical circuitry. Two plausible explanations exist: (1) a single CPG coordinates muscular contractions and phasically alters proprioceptive reflex modulation, as well as cutaneous input, using feed-forward control; (2) two separate circuits are strongly entrained, producing synchronous outputs for inter-limb coordination and reflex modulation. The out-of-phase task used in this study was limited in discerning such a difference, if it exists.  相似文献   

16.
During natural human locomotion, neural connections are activated that are typical of regulation of the quadrupedal walking. The interaction between the neural networks generating rhythmic movements of the upper and lower limbs depends on tonic state of each of these networks regulated by motor signals from the brain. Distortion of these signals in patients with Parkinson’s disease (PD) may lead to disruption of the interlimb interactions. We examined the effect of movements of the limbs of one girdle on the parameters of the motor activity of another limb girdle at their joint cyclic movements under the conditions of arm and leg unloading in 17 patients with PD and 16 healthy subjects. We have shown that, in patients, the effect of voluntary and passive movements of arms, as well as the active movement of the distal parts of arms, on the voluntary movement of legs is weak, while in healthy subjects, the effect of arm movements on the parameters of voluntary stepping is significant. The effect of arm movements on the activation of the involuntary stepping by vibrational stimulation of-legs in patients was absent, while in healthy subjects, the motor activity of arms increased the possibility of involuntary rhythmic movements activation. Differences in the effect of leg movements on the rhythmic movements of arms were found in both patients and healthy subjects. The interlimb interaction appeared after drug administration. However, the effect of the drug was not sufficient for the recovery of normal state of the neural networks in patients. In PD patients, neural networks generating stepping rhythm have an increased tonic activity, which prevents the activation and appearance of involuntary rhythmic movements facilitating the effects of arms on legs.  相似文献   

17.
Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete cessation of the rhythm. The type of effect obtained depended on the level of swim-evoking stimulation. These effects suggest that swim-evoking and scratch-evoking inputs can interact strongly in the spinal cord to modify the rhythm and pattern of motor output. Collectively, the single-neuron recordings and the results of simultaneous stimulation suggest that important elements of the generation of rhythms and patterns are shared between locomotion and scratching in limbed vertebrates.  相似文献   

18.
19.
In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions.  相似文献   

20.
BACKGROUND: Rhythmic motor behaviors can be generated continuously (e.g., breathing) or episodically (e.g., locomotion, swallowing), when short or long bouts of rhythmic activity are interspersed with periods of quiescence. Although the mechanisms of rhythm generation are known in detail in many systems, there is very little understanding of how the episodic nature of rhythmic behavior is produced at the neuronal level. RESULTS: Using a well-established episodic rhythm-generating neural circuit controlling molluscan feeding, we demonstrate that quiescence between bouts of activity arises from active, maintained inhibition of an otherwise rhythmically active network. We show that the source of the suppressive drive is within the circuit itself; a single central pattern generator (CPG) interneuron type that fires tonically to inhibit feeding during quiescence. Suppression of the tonic activity of this neuron by food is sufficient to change the network from an inactive to a rhythmically active state, with the cell switching function to fire phasically as part of the food-evoked rhythmogenesis. Furthermore, the absolute level of intrinsic suppressive control is modulated extrinsically by the animal's behavioral state (e.g., hunger/satiety), increasing the probability of episodes of feeding when the animal is hungry. CONCLUSIONS: By utilizing the same intrinsic member of a CPG network in both rhythm-generation and suppression, this system has developed a simple and efficient mechanism for generating a variable level of response to suit the animal's changing behavioral demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号