首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
K Abremski  R Hoess  N Sternberg 《Cell》1983,32(4):1301-1311
Bacteriophage P1 encodes its own site-specific recombination system consisting of a site at which recombination takes place called loxP and a recombinase called Cre. A number of lambda and plasmid substrates containing two loxP sites have been constructed. Using these substrates we have shown both in vivo and in vitro that a fully functional loxP site is composed of no more than 60 bp. In vitro, when an extract containing Cre is used, recombination between loxP sites on supercoiled, nicked-circle or linear DNA occurs efficiently. The most surprising result from the in vitro studies is that 50% of the products of recombination between loxP sites on a supercoiled DNA substrate are present as free supercoiled circles. The ability to produce free products starting with a supercoiled substrate suggests a rather unique property of Cre-mediated lox recombination, the implications of which are discussed in terms of possible effects of the protein on the topology of the DNA molecule.  相似文献   

2.
Using heteroduplex molecules formed from a pair of plasmids, one of which contains a small deletion relative to the other, it is shown that bacterial topoisomerase I can relax a positively supercoiled DNA if a short single-stranded loop is placed in the DNA. This result supports the postulate that the specificity of bacterial DNA topoisomerase I for negatively supercoiled DNA in its relaxation reaction derives from the requirement of a short single-stranded DNA segment in the active enzyme-substrate complex. Nucleolytic and chemical probing of complexes between bacterial DNA topoisomerase I and heteroduplex DNA molecules containing single-stranded loops ranging from 13 to 27 nucleotides in length suggests that the enzyme binds specifically to the region containing a single-stranded loop; the site of DNA cleavage by the topoisomerase appears to lie within the single-stranded loop, with the enzyme interacting with nucleotides on both sides of the point of cleavage.  相似文献   

3.
4.
In chimpanzee hepatitis B virus (HBV) carriers, the mechanism of viral persistence has been examined by analyzing viral DNA molecules in liver and serum. Chimpanzee liver DNA contained two extrachromosomal HBV DNA molecules migrating on hybridization blots at 4.0 kb and 2.3 kb. There was no evidence for integration of HBV DNA into the host genome. The extrachromosomal molecules were distinct from Dane particle DNA and were converted to linear 3.25 kb full-length double-stranded HBV DNA on digestion with Eco RI. Nucleases S1 and Bal 31 converted "2.3 kb" HBV DNA to 3.25 kb via an intermediate of "4.0 kb" apparent length. The HBV DNA molecule that migrated at 2.3 kb represents a supercoiled form I of the HBV genome, and the molecule that migrated at 4.0 kb represents a full-length "nicked," relaxed circular form II. Evidence for supercoiled HBV DNA in serum Dane particles was obtained by production of form II molecules upon digestion with nuclease S1 or Bal 31. It is proposed that most Dane particles represent interfering noninfectious virus containing partially double-stranded DNA circles and that particles containing supercoiled HBV DNA may represent infectious hepatitis B virus.  相似文献   

5.
Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins.  相似文献   

6.
We reported that DNA replication initiates from the region containing an autonomously replicating sequence from Saccharomyces cerevisiae when negatively supercoiled plasmid DNA is incubated with the proteins required for simian virus 40 DNA replication (Y. Ishimi and K. Matsumoto, Proc. Natl. Acad. Sci. USA 90:5399-5403, 1993). In this study, the DNAs containing initiation zones from mammalian cells were replicated in this model system. When negatively supercoiled DNA containing an initiation zone (2 kb) upstream of the human c-myc gene was incubated with simian virus 40 T antigen as a DNA helicase, HSSB (also called replication protein A), and DNA polymerase alpha-primase complex isolated from HeLa cells, DNA replication was specifically initiated from the center of the initiation zone, which was elongated bidirectionally in the presence of a DNA swivelase. Without HSSB, the level of DNA synthesis was significantly reduced and the localized initiation could not be detected, indicating that HSSB plays an essential role in the initiation of DNA replication. The digestion of negatively supercoiled template DNA with a single-strand-specific nuclease revealed that HSSB stimulated DNA unwinding in the center of the initiation zone where the DNA duplex is relatively unstable. In contrast, DNA replication started from a broad region of an initiation zone downstream of the dihydrofolate reductase gene from chinese hamster ovary cells, but the center of the region was mapped near the origin of bidirectional DNA replication. These results suggested that this system mimics a fundamental process of initiation of eukaryotic DNA replication. The mechanism of initiation is discussed.  相似文献   

7.
Plasmid pGC20 containing the (dGC)9 insert in SmaI recognition site has been used to study the inhibition of cleavage by different restriction endonuclease due to Z-DNA formation in (dCG)10 sequence of the negatively supercoiled plasmid. Data obtained indicate the different sensitivity of restriction endonucleases to DNA conformational perturbations resulted from the Z-DNA formation. Therefore, the inhibition of DNA cleavage by a particular restriction endonuclease cannot serve as a criterion for the estimation of the length of B-Z junctions in circular supercoiled DNAs.  相似文献   

8.
Although DNA is frequently bent and supercoiled in the cell, much of the available information on DNA structure at the atomistic level is restricted to short linear sequences. We report atomistic molecular dynamics (MD) simulations of a series of DNA minicircles containing between 65 and 110 bp which we compare with a recent biochemical study of structural distortions in these tight DNA loops. We have observed a wealth of non-canonical DNA structures such as kinks, denaturation bubbles and wrinkled conformations that form in response to bending and torsional stress. The simulations show that bending alone is sufficient to induce the formation of kinks in circles containing only 65 bp, but we did not observe any defects in simulations of larger torsionally relaxed circles containing 110 bp over the same MD timescales. We also observed that under-winding in minicircles ranging in size from 65 to 110 bp leads to the formation of single stranded bubbles and wrinkles. These calculations are used to assess the ability of atomistic MD simulations to determine the structure of bent and supercoiled DNA.  相似文献   

9.
Short-lived nucleoprotein complexes (r-py complex) containing replicating polyoma DNA were isolated from infected cells after lysis with Triton X-100. The Triton lysing procedure of Green, Miller, and Hendler (1971) releases most complexes containing supercoiled viral DNA (py complex) from nuclei, but liberates only a portion of r-py complexes. r-py Complexes are associated more strongly with nuclear sites but can be extracted by prolonged incubation of nuclei in lysing solution. Complexes containing replicating polyoma DNA appear to be precursors to stable complexes containing supercoiled DNA. Sedimentation and buoyant density studies indicate that protein is bound to both r-py complexes and py complexes at a ratio of protein to DNA of about 1 to 2/1. Both types of complexes sediment as if the viral DNA is more compact than free DNA and both undergo major reversible configurational changes with increased salt concentration. Changes resulting from enzymatic and chemical treatment indicate that there may be two or more protein components in both r-py complex and py complex. One component is digested by Pronase and trypsin while another is resistant to the enzymes but released by deoxycholate. The abundance and similarity in chemical and physical properties of protein bound to all forms of polyoma DNA suggest that part of the protein molecules may serve in a structural capacity.  相似文献   

10.
We have analyzed the modulation of DNA synthesis on a supercoiled plasmid DNA template by DNA polymerases (pol), minichromosome maintenance protein complex (Mcm), topoisomerases, and the origin recognition complex (ORC) using an in vitro assay system. Antisera specific against the four-subunit pol alpha, the catalytic subunit of pol delta, and the Mcm467 complex each inhibited DNA synthesis. However, DNA synthesis in this system appeared to be independent of polepsilon. Consequently, DNA synthesis in the in vitro system appeared to depend only on two polymerases, alpha and delta, as well as the Mcm467 DNA helicase. This system requires supercoiled plasmid DNA template and DNA synthesis absolutely required DNA topoisomerase I. In addition, we also report here a novel finding that purified recombinant six subunit ORC significantly stimulated the DNA synthesis on a supercoiled plasmid DNA template containing an autonomously replicating sequence, ARS1.  相似文献   

11.
Escherichia coli topoisomerases I and III (Topo I and Topo III) relax negatively supercoiled DNA and also catenate/decatenate DNA molecules containing single-stranded DNA regions. Although these enzymes share the same mechanism of action and have similar structures, they participate in different cellular processes. In bulk experiments Topo I is more efficient at DNA relaxation, whereas Topo III is more efficient at catenation/decatenation, probably reflecting their differing cellular roles. To examine the differences in the mechanism of these two related type IA topoisomerases, single-molecule relaxation studies were conducted on several DNA substrates: negatively supercoiled DNA, positively supercoiled DNA with a mismatch and positively supercoiled DNA with a bulge. The experiments show differences in the way the two proteins work at the single-molecule level, while also recovering observations from the bulk experiments. Overall, Topo III relaxes DNA efficiently in fast processive runs, but with long pauses before relaxation runs, whereas Topo I relaxes DNA in slow processive runs but with short pauses before runs. The combination of these properties results in Topo I having an overall faster total relaxation rate, even though the relaxation rate during a run for Topo III is much faster.  相似文献   

12.
Characterization of a potent catenation activity of HeLa cell nuclei   总被引:1,自引:0,他引:1  
Using an assay which measures catenation of a supercoiled DNA template, we have characterized and quantitated a potent activity identified in crude fractions of HeLa cell nuclei. Catenation requires Mg-ATP and a DNA-condensing agent, polyvinyl alcohol. A filter-binding or agarose gel assay can be used to quantitate activity. In this reaction, DNA topoisomerase I relaxes the input supercoiled DNA to provide DNA topoisomerase II, a strongly favored template for catenation. DNA topoisomerase II preferentially catenates relaxed DNA over supercoiled DNA by a factor of 100. One molecule of DNA topoisomerase II is able to catenate about 20 circles of relaxed DNA/min at 30 degrees C but only 0.16 circle of supercoiled DNA/min at 30 degrees C. The purified HeLa topoisomerase I can also catenate DNA under these assay conditions, yet in an ATP-independent fashion. It is much less efficient than topoisomerase II; one molecule of topoisomerase I catenates only about 3.8 X 10(-3) molecules of supercoiled DNA/min at 30 degrees C with a DNA template containing 5% nicked circles. This remarkable difference between the two enzymes allows quantitation of DNA topoisomerase II activity seen in the presence of excess topoisomerase I. Unlike Escherichia coli topoisomerase I (omega), catenation by the HeLa topoisomerase I is not stimulated by gapped circles.  相似文献   

13.
The selective adsorption of supercoiled plasmid, open-circular plasmid, and genomic DNA to gyrolite, a compound from the class of crystalline calcium silicate hydrates, is investigated and exploited for purification purposes. Genomic DNA and open-circular plasmid bind to gyrolite adsorbents with greater affinity than the more conformationally constrained supercoiled plasmid. As such, the gyrolite adsorbents are an economical and scaleable alternative to chromatographic purification for the removal of DNA impurities from solutions containing supercoiled plasmid. The advantage of gyrolite adsorbents is their lower unit price and ability to selectively adsorb DNA impurities without binding supercoiled plasmid under certain conditions. The effects of ionic strength, temperature, chelating agent, divalent cation, and lyotropic salts on adsorption of highly purified plasmid are studied to understand the forces that bind DNA to gyrolite, a structure with hydrophilic and hydrophobic characteristics. The results indicate that DNA binding is governed by hydrogen bonding, electrostatic bridging with divalent cations, shielding of electrostatic repulsion, hydrophobic adsorption, and disruption of integral surface water layer on gyrolite. On the basis of results from a range of Hofmeister series salts, strongly hydrated anions may enhance DNA adsorption by promoting hydrophobic interactions between DNA and gyrolite. Conversely, the very weakly hydrated chaotrope I(-) may enhance adsorption by strongly associating with hydrophobic siloxanes of gyrolite, thereby disrupting an integral water layer, which competes for hydrogen bonding sites.  相似文献   

14.
Preferential binding of human topoisomerase I to superhelical DNA.   总被引:4,自引:1,他引:3       下载免费PDF全文
K R Madden  L Stewart    J J Champoux 《The EMBO journal》1995,14(21):5399-5409
  相似文献   

15.
A catenating enzyme and a type I topoisomerase were purified from Trypanosoma cruzi. We investigated the inhibitory effect of DNA-intercalating drugs on topoisomerisations catalysed by these enzymes. Inhibition of catenation was detected by electrophoretic analysis in neutral agarose gels. However, the inhibition of relaxation was not readily detectable in these gels since supercoiled DNA, which was relaxed in the presence of an intercalating drug, returned to a supercoiled state when the drug was removed. Thus electrophoretic analyses were made in gels containing chloroquine so that unreacted DNA could be distinguished from DNA relaxed by the enzyme. The results show that the catenation was more sensitive to DNA-intercalating drugs than the relaxation.  相似文献   

16.
The avian retrovirus pp32 DNA endonuclease prefers to nick supercoiled DNA containing long terminal repeat (LTR) circle junction sequences at one or the other of two sites, each which mapped two nucleotides back from the circle junction. The sequence at the sites of nicking was (sequence: see text) where increases indicates the positions of the two alternative nicked sites. This site-specific nicking was observed when the circle junction LTR DNA was present in supercoiled form, the divalent metal ion was Mg2+ and the molar ratio of protein to DNA was low. The majority of other LTR DNA sites nicked by pp32 in the presence of Mg2+ were adjacent to or within the dinucleotide CA.  相似文献   

17.
2-6 dimethyl-9-hydroxyellipticinium inhibited the relaxation of supercoiled DNA by the type I topoisomerase of T. cruzi. Since DNA relaxed in the presence of an intercalating drug prior to electrophoresis became supercoiled when the ligand was removed, we analysed the topoisomerisation in gels containing another ligand, chloroquine. The inhibition which is reported here, concerning a type I topoisomerase, is of an exceptional efficiency.  相似文献   

18.
Quantitation of the conversion of nonradioactive supercoiled DNA to its open circular or linear forms on ethidium-stained electrophoretic gels has been difficult because of differential binding of ethidium to supercoiled DNA vs other forms under different conditions and the nonlinear response of photographic film. We have developed methods for adding a linear DNA as an internal fluorescence standard to "normalize" the quantity of DNA loaded into each lane of a gel. Inclusion of a linear normalizing DNA in samples before partitioning for individual supercoil cleavage reactions allows the quantitation of the resultant species, is technically easy, and does not require quantitative application of the sample to the gel. If the presence of a normalizing DNA during supercoil cleavage is undesirable, the addition of a normalizing plasmid to each sample after supercoil cleavage (but before electrophoresis) or the quantitative application of samples containing test DNA alone to the gel gives similar data, but with increased variability. We use the normalizing DNA method in cleavage by a physical agent (ionizing radiation) and in a more complex situation, by a protein-based, light-dependent synthetic endonuclease. We show how the fraction of intact supercoiled DNA can be calculated from measurement of the cleaved and normalizing species only. The method also can be used in reactions involving the depletion of one DNA species, whether supercoiled or not, such as protein-DNA interactions as detected by gel retardation assays.  相似文献   

19.
胡春生  张通  张庆林 《生物技术通讯》2011,22(1):104-107,112
质粒载体在基因治疗中占据重要地位.传统质粒DNA在真核生物中可能会引起严重的炎症反应,未甲基化的CpG序列可能抑制基因的表达,最好的解决办法是在生产质粒载体过程中将细菌调控序列整体消除.微环DNA是一种新颖的小环超螺旋表达框,它是传统质粒在大肠杆菌体内通过位点特异性重组得到的.微环DNA缺乏抗性标记基因、复制原点等细菌...  相似文献   

20.
The extracellular nucleases from Alteromonas espejiana BAL 31 can catalyze the endonucleolytic and/or exonucleolytic hydrolysis of duplex DNA in response to a variety of alterations, either covalent or noncovalent, in DNA structure. The nuclease can exist as at least two kinetically and molecularly distinct protein species. The two species that have been studied, called the 'fast' (F) and 'slow' (S) nucleases, both readily convert negatively supercoiled DNAs to linear duplex molecules and accomplish this conversion through the formation of a circular duplex intermediate containing usually a single interruption in one strand. It is further shown that most of these intermediates contain gaps arising from the removal in a processive manner of one or more nucleotide residues after the introduction of the initial strand break (nick). Considering only the intermediates with gaps, the average number of missing residues is 6.3 +/- 0.5 and 2.8 +/- 0.3, respectively, for DNA acted upon by the F and S enzymes independently of the extent of conversion of supercoiled DNA. The nicks and gaps are bounded by 3'-hydroxyl and 5'-phosphoryl termini. When singly nicked circular DNA is used as the substrate, conversion to the linear duplex form occurs predominantly through a gapped circular intermediate with the same average numbers, within experimental error, of missing nucleotides for the respective nuclease species as found when supercoiled DNA is the substrate. The conversion to linear duplex DNA is much slower when nicked circular DNA is the substrate compared to that found when supercoiled DNA is the starting material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号