首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A likely key factor in the failure of a HIV-1 vaccine based on cytotoxic T lymphocytes (CTL) is the natural immunodominance of epitopes that fall in variable regions of the proteome, which both increases the chance of epitope sequence mismatch with the incoming challenge strain and replicates the pathogenesis of early CTL failure due to epitope escape mutation during natural infection. To identify potential vaccine sequences to focus the CTL response on highly conserved epitopes, the whole proteomes of HIV-1 clades A1, B, C, and D were assessed for Shannon entropy at each amino acid position. Highly conserved regions in Gag (cGag-1, Gag 148–214, and cGag-2, Gag 253–331), Env (cEnv, Env 521–606), and Nef (cNef, Nef 106–148) were identified across clades. Inter- and intra-clade variability of amino acids within the regions tended to overlap, suggesting that polyvalent representation of consensus sequences for the four clades would allow broad HIV-1 strain representation. These four conserved regions were rich in both known and predicted CTL epitopes presented by a breadth of HLA types, and screening of 54 persons with chronic HIV-1 infection revealed that these regions are commonly immunogenic in the context of natural infection. These data suggest that vaccine delivery of a 16-valent mixture of these regions could focus the CTL response against conserved epitopes that are broadly representative of circulating HIV-1 strains.  相似文献   

2.
Recognition by CD8(+) T lymphocytes (CTL) of epitopes that are derived from conserved gene products, such as Gag and Pol, is well documented and conceptually supports the development of epitope-based vaccines for use against diverse HIV-1 subtypes. However, many CTL epitopes from highly conserved regions within the HIV-1 genome are highly variable, when assessed by comparison of amino acid sequences. The TCR is somewhat promiscuous with respect to peptide binding, and, as such, CTL can often recognize related epitopes. In these studies, we evaluated CTL recognition of five sets of variant HIV-1 epitopes restricted to HLA-A*0201 and HLA-A*1101 using HLA transgenic mice. We found that numerous different amino acid substitutions can be introduced into epitopes without abrogating their recognition by CTL. Based on our findings, we constructed an algorithm to predict those CTL epitopes capable of inducing responses in the HLA transgenic mice to the greatest numbers of variant epitopes. Similarity of CTL specificity for variant epitopes was demonstrated for humans using PBMC from HIV-1-infected individuals and CTL lines produced in vitro using PBMC from HIV-1-uninfected donors. We believe the ability to predict CTL epitope immunogenicity and recognition patterns of variant epitopes can be useful for designing vaccines against multiple subtypes and circulating recombinant forms of HIV-1.  相似文献   

3.
It has been hypothesized that sequence variation within CTL epitopes leading to immune escape plays a role in the progression of HIV-1 infection. Only very limited data exist that address the influence of biologic characteristics of CTL epitopes on the emergence of immune escape variants and the efficiency of suppression HIV-1 by CTL. In this report, we studied the effects of HIV-1 CTL epitope sequence variation on HIV-1 replication. The highly conserved HLA-B14-restricted CTL epitope DRFYKTLRAE in HIV-1 p24 was examined, which had been defined as the immunodominant CTL epitope in a long-term nonprogressing individual. We generated a set of viral mutants on an HX10 background differing by a single conservative or nonconservative amino acid substitution at each of the P1 to P9 amino acid residues of the epitope. All of the nonconservative amino acid substitutions abolished viral infectivity and only 5 of 10 conservative changes yielded replication-competent virus. Recognition of these epitope sequence variants by CTL was tested using synthetic peptides. All mutations that abrogated CTL recognition strongly impaired viral replication, and all replication-competent viral variants were recognized by CTL, although some variants with a lower efficiency. Our data indicate that this CTL epitope is located within a viral sequence essential for viral replication. Targeting CTL epitopes within functionally important regions of the HIV-1 genome could limit the chance of immune evasion.  相似文献   

4.

Background

HLA class-I alleles differ in their ability to control HIV replication through cell-mediated immune responses. No consistent associations have been found between the breadth of Cytotoxic T Lymphocytes (CTL) responses and the control of HIV-1, and it is unknown whether the size or distribution of the viral proteome-wide epitope repertoire, i.e., the intrinsic ability to present fewer, more or specific viral epitopes, could affect clinical markers of disease progression.

Methodology/Principal Findings

We used an epitope prediction model to identify all epitope motifs in a set of 302 HIV-1 full-length proteomes according to each individual''s HLA (Human Leukocyte Antigen) genotype. The epitope repertoire, i.e., the number of predicted epitopes per HIV-1 proteome, varied considerably between HLA alleles and thus among individual proteomes. In a subgroup of 270 chronically infected individuals, we found that lower viral loads and higher CD4 counts were associated with a larger predicted epitope repertoire. Additionally, in Gag and Rev only, more epitopes were restricted by alleles associated with low viral loads than by alleles associated with higher viral loads.

Conclusions/Significance

This comprehensive analysis puts forth the epitope repertoire as a mechanistic component of the multi-faceted HIV-specific CTL response. The favorable impact on markers of disease status of the propensity to present more HLA binding peptides and specific proteins gives impetus to vaccine design strategies that seek to elicit responses to a broad array of HIV-1 epitopes, and suggest a particular focus on Gag.  相似文献   

5.
T cell directed HIV vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a match or near-match between the epitope induced by vaccination and the infecting viral strain. We compared the frequency and specificity of the CTL epitope responses elicited by the replication-defective Ad5 gag/pol/nef vaccine used in the Step trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. Among vaccinees with detectable 15-mer peptide pool ELISpot responses, there was a median of four (one Gag, one Nef and two Pol) CD8 epitopes per vaccinee detected by 9-mer peptide ELISpot assay. Importantly, frequency analysis of the mapped epitopes indicated that there was a significant skewing of the T cell response; variable epitopes were detected more frequently than would be expected from an unbiased sampling of the vaccine sequences. Correspondingly, the most highly conserved epitopes in Gag, Pol, and Nef (defined by presence in >80% of sequences currently in the Los Alamos database www.hiv.lanl.gov) were detected at a lower frequency than unbiased sampling, similar to the frequency reported for responses to natural infection, suggesting potential epitope masking of these responses. This may be a generic mechanism used by the virus in both contexts to escape effective T cell immune surveillance. The disappointing results of the Step trial raise the bar for future HIV vaccine candidates. This report highlights the bias towards less-conserved epitopes present in the same vaccine used in the Step trial. Development of vaccine strategies that can elicit a greater breadth of responses, and towards conserved regions of the genome in particular, are critical requirements for effective T-cell based vaccines against HIV-1. Trial registration: ClinicalTrials.gov NCT00849680, A Study of Safety, Tolerability, and Immunogenicity of the MRKAd5 Gag/Pol/Nef Vaccine in Healthy Adults.  相似文献   

6.
CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.  相似文献   

7.
To detect HLA-binding peptides in 10 HIV-1 proteins (Rev, Tat, Vif, Vpr, Vpu, Gag p18, Gag p24, Gag p15, Env gp120 and Env gp41), the peptide binding assay (PBA) has been performed using three HLA class I molecules. Correlations have been searched between the PBA results and the peptide competitor activity in a functional test using HLA-A2-restricted CTL and target cells. A correlation between the data found in the PBA and well-defined CTL epitopes could be attempted only for the three Gag proteins. For these proteins, our results are in agreement with the known existence of epitopes reacting with human CD8+ CTL, with some exceptions. Together with the results reported with a panel of Nef peptides, these experiments showed that at least 18/20 of the already reported CTL epitopes from HIV-1 Gag, Nef, and Env proteins could be detected by the PBA, most (17/18) corresponding to strong reactivities. Perhaps more important, the regions of HIV-1 Gag p24 or Nef proteins that contain multiple associated CTL epitopes, with different HLA restrictions, were clearly identified by the reactivities in the PBA of several overlapping peptides and the major practical interest of the PBA might be the detection of such polyepitopic regions. Prediction are proposed in this report for 10 proteins, including several proteins for which CTL epitopes remain presently unknown.  相似文献   

8.
Host immunologic factors, including human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL), are thought to contribute to the control of HIV type 1 (HIV-1) replication and thus delay disease progression in infected individuals. Host immunologic factors are also likely to influence perinatal transmission of HIV-1 from infected mother to infant. In this study, the potential role of CTL in modulating HIV-1 transmission from mother to infant was examined in 11 HIV-1-infected mothers, 3 of whom transmitted virus to their offspring. Frequencies of HIV-1-specific human leukocyte antigen class I-restricted CTL responses and viral epitope amino acid sequence variation were determined in the mothers and their infected infants. Maternal HIV-1-specific CTL clones were derived from each of the HIV-1-infected pregnant women. Amino acid substitutions within the targeted CTL epitopes were more frequently identified in transmitting mothers than in nontransmitting mothers, and immune escape from CTL recognition was detected in all three transmitting mothers but in only one of eight nontransmitting mothers. The majority of viral sequences obtained from the HIV-1-infected infant blood samples were susceptible to maternal CTL. These findings demonstrate that epitope amino acid sequence variation and escape from CTL recognition occur more frequently in mothers that transmit HIV-1 to their infants than in those who do not. However, the transmitted virus can be a CTL susceptible form, suggesting inadequate in vivo immune control.  相似文献   

9.
Large-scale computational identification of HIV T-cell epitopes   总被引:7,自引:0,他引:7  
Bioinformatics-driven T-cell epitope-identification methods can enhance vaccine target selection significantly. We evaluated three unrelated computational methods to screen Pol, Gag and Env sequences extracted from the Los Alamos HIV database for HLA-A*0201 and HLA-B*3501 T-cell epitope candidates. The hidden Markov model predicted 389 HLA-B*3501-restricted candidates from 374 HIV-1 and 97 HIV-2 sequences. The artificial neural network (ANN) model, and Bioinformatics and Molecular Analysis Section (BIMAS) quantitative matrix predictions for A*0201 yielded 1122 HIV-1 and 548 HIV-2 candidates. The overall sequence coverage of the predicted A*0201 T-cell epitopes was 2.7% (HIV-1)and 3.0% (HIV-2). HLA-B*3501-predicted epitopes covered 0.9% (HIV-1) and 1.4% (HIV-2) of the total sequence. Comparison of 890 ANN- and 397 BIMAS-derived HIV-1 A*0201- restricted epitope candidates showed that only 13-19% of the predicted and 26% of the experimentally confirmed T-cell epitopes were captured by both methods. Extrapolating these results, we estimated that at least 247 predicted HIV-1 epitopes are yet to be discovered as active A*0201-restricted T-cell epitopes. Adequate comparison and combined usage of various predictive bioinformatics methods, rather than uncritical use of any single prediction method, will enable cost-effective and efficient T-cell epitope screening.  相似文献   

10.

Introduction

The design of a globally effective vaccine rests on the identification of epitopes capable of eliciting effective cytotoxic T lymphocyte (CTL) responses across multiple HIV clades in different populations. This study aims to discern the effect of HLA polymorphisms and the cross-clade reactivity or clade-specificity of epitopes in Thailand where HIV-1 CRF01_AE is circulating.

Materials and Methods

14 peptides based on consensus HIV-1 CRF01_AE amino acid sequences were designed for use in IFN-γ ELISpot assays and 51Cr release assays among 66 HIV-1 CRF01_AE-infected Thai patients. For ELISpot responders carrying HLA alleles currently unknown to restrict CRF01_AE epitopes, in silico epitope-HLA prediction was performed.

Results

29/66 (43.9%) patients recognized at least one peptide. In total 79 responses were seen against all 14 peptides. 28/79 (35.4%) of the responses were in patients with HLA alleles previously reported to restrict CRF01_AE epitopes, 24/79 (30.4%) responses were in individuals with HLA alleles previously reported to restrict epitopes of HIV clades other than CRF01_AE, and the remaining 27/79 (34.2%) responses were not associated with HLA alleles previously known to restrict HIV epitopes. In silico epitope prediction detected 19 novel, epitope-HLA combinations, and 11/19 (57.9%) were associated with HLA-C alleles. We further confirmed a novel HLA restriction of a previously identified HIV-1 Gag epitope [p24122–130: PPIPVGDIY (PY9)] by HLA-B*40:01 with a standard 51Cr release assay.

Discussion

CTL recognition sites in HIV-1 Gag were similar among different clades but the HLA restriction differed in Thai patients. This disparity in HLA restriction along different populations illustrated the importance of clade- and population-specific HLA analysis prior to CTL vaccine design.  相似文献   

11.
Cytotoxic T-lymphocyte (CTL) activity plays a central role in control of viral replication and in determining outcome in cases of human immunodeficiency virus type 1 (HIV-1) infection. Incorporation of important CTL epitope sequences into candidate vaccines is, therefore, vital. Most CTL studies have focused upon small numbers of adult Caucasoid subjects infected with clade-B virus, whereas the global epidemic is most severe in sub-Saharan African populations and predominantly involves clade-C infection in both adults and children. In this study, sensitive enzyme-linked immunospot (elispot) assays have been utilized to identify the dominant Gag-specific CTL epitopes targeted by adults and children infected with clade-B or -C virus. Cohorts evaluated included 44 B-clade-infected Caucasoid American and African American adults and children and 37 C-clade-infected African adults and children from Durban, South Africa. The results show that 3 out of 46 peptides spanning p17(Gag) and p24(Gag) sequences tested contain two-thirds of the dominant Gag-specific epitopes, irrespective of the clade, ethnicity, or age group studied. However, there were distinctive differences between the dominant responses made by Caucasoids and Africans. Dominant responses in Caucasoids were more often within p17(Gag) peptide residues 16 to 30 (38 versus 12%; P < 0.01), while p24(Gag) peptide residues 41 to 60 contained the dominant Gag epitope more often in the African subjects tested (39 versus 4%; P < 0.005). Within this 20-mer p24(Gag), an epitope presented by both B42 and B81 is defined which represents the dominant Gag response in >30% of the total infected population in Durban. This epitope is closely homologous with dominant HIV-2 and simian immunodeficiency virus Gag-specific CTL epitopes. The fine focusing of dominant CTL responses to these few regions of high immunogenicity is of significance to vaccine design.  相似文献   

12.
Investigating escape mechanisms of human immunodeficiency virus type 1 (HIV-1) from cytotoxic T lymphocytes (CTLs) is essential for understanding the pathogenesis of HIV-1 infection and developing effective vaccines. To study the processing and presentation of known CTL epitopes, we prepared Epstein-Barr virus-transformed B cells that endogenously express the gag gene of six field isolates by adopting an env/nef-deletion HIV-1 vector pseudotyped with vesicular stomatitis virus G protein and then tested them for the recognition by Gag epitope-specific CTL lines or clones. We observed that two field variants, SLFNTVAVL and SVYNTVATL, of an A*0201-restricted Gag CTL epitope SLYNTVATL, and three field variants, KYRLKHLVW, QYRLKHIVW, and RYRLKHLVW, of an A24-restricted Gag CTL epitope KYKLKHIVW escaped from being killed by the CTL lines, despite the fact that they were recognized when the synthetic peptides corresponding to these variant sequences were exogenously loaded onto the target cells. Thus, their escape is likely due to the changes that occur during the processing and presentation of epitopes in the infected cells. Mutations responsible for this mode of escape were located within the epitope regions rather than the flanking regions, and such mutations did not influence the virus replication. The results suggest that the impaired antigen processing and presentation often occur in HIV-1 field isolates and thus are one of the major mechanisms that enable HIV-1 to escape from CTL recognition. We emphasize the importance of testing HIV-1 variants in an endogenous expression system.  相似文献   

13.
In human immunodeficiency virus type 1 (HIV-1), mutations that escape from cytotoxic T-lymphocyte (CTL) recognition have been documented, and sequence analyses have provided indirect support for the hypothesis that natural selection has favored CTL escape mutants within an infected host. In spite of such evidence for within-host selection by CTL, it has been more difficult to determine how natural selection by host CTL has influenced long-term evolution of HIV-1. We used statistical analysis of published HIV-1 genomic sequences to examine the role of natural selection in between-host evolution of CTL epitopes. Based on a phylogenetic analysis, we identified 21 pairs of closely related genomes isolated from different hosts and examined the pattern of nucleotide substitution in genomic regions encoding well-characterized CTL epitopes. The results revealed that certain CTL epitopes have been subject to repeated positive selection across the population, while others are generally conserved. Furthermore, evidence of positive selection was associated with divergence from the canonical epitope sequence and with an enhanced frequency of convergent amino acid sequence changes in CTL epitopes. The results support the hypothesis that CTL-driven selection has been a major factor in the long-term evolution of HIV-1.  相似文献   

14.

Introduction

Class I HLA''s polymorphism has hampered CTL epitope mapping with laborious experiments. Objectives are 1) to evaluate the novel in silico model in predicting previously reported epitopes in comparison with existing program, and 2) to apply the model to predict optimal epitopes with HLA using experimental results.

Materials and Methods

We have developed a novel in silico epitope prediction method, based on HLA crystal structure and a peptide docking simulation model, calculating the peptide-HLA binding affinity at four amino acid residues in each terminal. It was applied to predict 52 HIV best–defined CTL epitopes from 15-mer overlapping peptides, and its predictive ability was compared with the HLA binding motif-based program of HLArestrictor. It was then used to predict HIV-1 Gag optimal epitopes from previous ELISpot results.

Results

43/52 (82.7%) epitopes were detected by the novel model, whereas 37 (71.2%) by HLArestrictor. We also found a significant reduction in epitope detection rates for longer epitopes in HLArestrictor (p = 0.027), but not in the novel model. Improved epitope prediction was also found by introducing both models, especially in specificity (p<0.001). Eight peptides were predicted as novel, immunodominant epitopes in both models.

Discussion

This novel model can predict optimal CTL epitopes, which were not detected by an existing program. This model is potentially useful not only for narrowing down optimal epitopes, but predicting rare HLA alleles with less information. By introducing different principal models, epitope prediction will be more precise.  相似文献   

15.
Expression of HLA-B*57 and the closely related HLA-B*58:01 are associated with prolonged survival after HIV-1 infection. However, large differences in disease course are observed among HLA-B*57/58:01 patients. Escape mutations in CTL epitopes restricted by these HLA alleles come at a fitness cost and particularly the T242N mutation in the TW10 CTL epitope in Gag has been demonstrated to decrease the viral replication capacity. Additional mutations within or flanking this CTL epitope can partially restore replication fitness of CTL escape variants. Five HLA-B*57/58:01 progressors and 5 HLA-B*57/58:01 long-term nonprogressors (LTNPs) were followed longitudinally and we studied which compensatory mutations were involved in the restoration of the viral fitness of variants that escaped from HLA-B*57/58:01-restricted CTL pressure. The Sequence Harmony algorithm was used to detect homology in amino acid composition by comparing longitudinal Gag sequences obtained from HIV-1 patients positive and negative for HLA-B*57/58:01 and from HLA-B*57/58:01 progressors and LTNPs. Although virus isolates from HLA-B*57/58:01 individuals contained multiple CTL escape mutations, these escape mutations were not associated with disease progression. In sequences from HLA-B*57/58:01 progressors, 5 additional mutations in Gag were observed: S126N, L215T, H219Q, M228I and N252H. The combination of these mutations restored the replication fitness of CTL escape HIV-1 variants. Furthermore, we observed a positive correlation between the number of escape and compensatory mutations in Gag and the replication fitness of biological HIV-1 variants isolated from HLA-B*57/58:01 patients, suggesting that the replication fitness of HLA-B*57/58:01 escape variants is restored by accumulation of compensatory mutations.  相似文献   

16.
HIV-1/AIDS vaccines must address the extreme diversity of HIV-1. We have designed new polyvalent vaccine antigens comprised of sets of 'mosaic' proteins, assembled from fragments of natural sequences via a computational optimization method. Mosaic proteins resemble natural proteins, and a mosaic set maximizes the coverage of potential T-cell epitopes (peptides of nine amino acids) for a viral population. We found that coverage of viral diversity using mosaics was greatly increased compared to coverage by natural-sequence vaccine candidates, for both variable and conserved proteins; for conserved HIV-1 proteins, global coverage may be feasible. For example, four mosaic proteins perfectly matched 74% of 9-amino-acid potential epitopes in global Gag sequences; 87% of potential epitopes matched at least 8 of 9 positions. In contrast, a single natural Gag protein covered only 37% (9 of 9) and 67% (8 of 9). Mosaics provide diversity coverage comparable to that afforded by thousands of separate peptides, but, because the fragments of natural proteins are compressed into a small number of native-like proteins, they are tractable for vaccines.  相似文献   

17.
Characterization of optimal CTL epitopes in Gag can provide crucial information for evaluation of candidate vaccines in populations at the epicenter of the HIV-1 epidemic. We screened 38 individuals with recent subtype C HIV-1 infection using overlapping consensus C Gag peptides and hypothesized that unique HLA-restricting alleles in the southern African population would determine novel epitope identity. Seventy-four percent of individuals recognized at least one Gag peptide pool. Ten epitopic regions were identified across p17, p24, and p2p7p1p6, and greater than two-thirds of targeted regions were directed at: TGTEELRSLYNTVATLY (p17, 35%); GPKEPFRDYVDRFFKTLRAEQATQDV (p24, 19%); and RGGKLDKWEKIRLRPGGKKHYMLKHL (p17, 15%). After alignment of these epitopic regions with consensus M and a consensus subtype C sequence from the cohort, it was evident that the regions targeted were highly conserved. Fine epitope mapping revealed that five of nine identified optimal Gag epitopes were novel: HLVWASREL, LVWASRELERF, LYNTVATLY, PFRDYVDRFF, and TLRAEQATQD, and were restricted by unique HLA-Cw*08, HLA-A*30/B*57, HLA-A*29/B*44, and HLA-Cw*03 alleles, respectively. Notably, three of the mapped epitopes were restricted by more than one HLA allele. Although these epitopes were novel and restricted by unique HLA, they overlapped or were embedded within previously described CTL epitopes from subtype B HIV-1 infection. These data emphasize the promiscuous nature of epitope binding and support our hypothesis that HLA diversity between populations can shape fine epitope identity, but may not represent a constraint for universal recognition of Gag in highly conserved domains.  相似文献   

18.
We analyzed HIV-1 genome sequences from 68 newly infected volunteers in the STEP HIV-1 vaccine trial. To determine whether the vaccine exerted selective T cell pressure on breakthrough viruses, we identified potential T cell epitopes in the founder sequences and compared them to epitopes in the vaccine. We found greater distances to the vaccine sequence for sequences from vaccine recipients than from placebo recipients. The most significant signature site distinguishing vaccine from placebo recipients was Gag amino acid 84, a site encompassed by several epitopes contained in the vaccine and restricted by human leukocyte antigen (HLA) alleles common in the study cohort. Moreover, the extended divergence was confined to the vaccine components of the virus (HIV-1 Gag, Pol and Nef) and not found in other HIV-1 proteins. These results represent what is to our knowledge the first evidence of selective pressure from vaccine-induced T cell responses on HIV-1 infection in humans.  相似文献   

19.
HLA class I-associated polymorphisms identified at the population level mark viral sites under immune pressure by individual HLA alleles. As such, analysis of their distribution, frequency, location, statistical strength, sequence conservation, and other properties offers a unique perspective from which to identify correlates of protective cellular immunity. We analyzed HLA-associated HIV-1 subtype B polymorphisms in 1,888 treatment-naïve, chronically infected individuals using phylogenetically informed methods and identified characteristics of HLA-associated immune pressures that differentiate protective and nonprotective alleles. Over 2,100 HLA-associated HIV-1 polymorphisms were identified, approximately one-third of which occurred inside or within 3 residues of an optimally defined cytotoxic T-lymphocyte (CTL) epitope. Differential CTL escape patterns between closely related HLA alleles were common and increased with greater evolutionary distance between allele group members. Among 9-mer epitopes, mutations at HLA-specific anchor residues represented the most frequently detected escape type: these occurred nearly 2-fold more frequently than expected by chance and were computationally predicted to reduce peptide-HLA binding nearly 10-fold on average. Characteristics associated with protective HLA alleles (defined using hazard ratios for progression to AIDS from natural history cohorts) included the potential to mount broad immune selection pressures across all HIV-1 proteins except Nef, the tendency to drive multisite and/or anchor residue escape mutations within known CTL epitopes, and the ability to strongly select mutations in conserved regions within HIV''s structural and functional proteins. Thus, the factors defining protective cellular immune responses may be more complex than simply targeting conserved viral regions. The results provide new information to guide vaccine design and immunogenicity studies.  相似文献   

20.
Substantial evidence argues that human immunodeficiency virus type 1 (HIV-1)-specific CD4(+) T cells play an important role in the control of HIV-1 replication in infected individuals. Moreover, it is increasingly clear that an HIV vaccine should elicit potent cytotoxic lymphocyte and antibody responses that will likely require an efficient CD4(+) T-cell response. Therefore, understanding and characterizing HIV-specific CD4(+) T-cell responses is an important aim. Here we describe the generation of HIV-1 Gag- and Gag peptide-specific CD4(+) T-cell clones from an HIV-1-seronegative donor by in vitro immunization with HIV-1 Gag peptides. The Gag peptides were able to induce a strong CD4(+) T-cell immune response in peripheral blood mononuclear cells from the HIV-1-seronegative donor. Six Gag peptide-specific CD4(+) T-cell clones were isolated and their epitopes were mapped. The region of p24 between amino acids 201 and 300 of Gag was defined as the immunodominant region of Gag. A new T helper epitope in the p6 protein of Gag was identified. Two clones were shown to recognize Gag peptides and processed Gag protein, while the other four clones reacted only to Gag peptides under the experimental conditions used. Functional analysis of the clones indicated that both Th1 and Th2 types of CD4(+) T cells were obtained. One clone showed direct antigen-specific cytotoxic activity. These clones represent a valuable tool for understanding the cellular immune response to HIV-1, and the study provides new insights into the HIV-1-specific CD4(+) T-cell response and the induction of an anti-Gag and -Gag peptide cellular primary immune response in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号