首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The tight junction, or zonula occludens (ZO), forms a semi-permeable barrier in the paracellular pathway in most vertebrate epithelia. The ZO is the apical-most member of a series of intercellular junctions, collectively known as the junctional complex, found at the interface of the apical and lateral cell surface. This structure not only restricts movement of substances around the cells, but may also serve as a fence acting to maintain the cell surface compositional polarity characteristic of epithelial cells. The morphology and physiology of the ZO have been well documented and are briefly reviewed here. The biochemistry of this important intercellular junction remains largely unknown, although a tight junction-specific polypeptide called ZO-1 has recently been identified. Preliminary observations regarding the role of this peripheral phosphoprotein in the biology of the ZO are presented.  相似文献   

2.
In a study of Necturus gallbladder epithelium Benzel et al. (Benzel et al., 1980) found that low (0.2–1.2 M) and higher concentrations (1.5 M and more) of cytochalasin B (CB) caused an increase and decrease in the transepithelial electrical resistance (TER), respectively. Moreover, there were slight changes in the height and complexicity of tight junction (TJ) strands, as visualized by freeze-fracture and freeze-etching. To elucidate the mechanisms of these findings, we first demonstrated that the effect is also present in monolayers of Madin-Darby Canine Kidney strain I (MDCK-I) cells. Thus, a low concentration (0.1 ng/ml) cytochalasin B (CB) strengthened the permeability barrier, as evidenced quantitatively by increases in TER on transepithelial electrical measurements. Furthermore, indirect immunofluorescence and confocal microscopy demonstrated that this effect was paralleled with an accumulation of F-actin and the tight junction marker protein, ZO-1, at the level of TJ. Equimolar concentrations of dihydrocytochalasin B (dhCB), on the other hand, did not lead to a tightening of the epithelium. Confirming previous studies, there was a general decrease in epithelial resistance after treatment with high concentrations (1 g/ml) of CB and dhCB, which was accompanied by distinct changes in the F-actin network and distribution of ZO-1. We speculate that the divergent effects of CB and dhCB on the F-actin and ZO-1 organization might be due to specific effects on the transport of monosaccharides across the plasma membrane, or that CB and dhCB in distinct ways involve the turnover of phosphatidylinositols in the membrane, thereby modulating junctional permeability and F-actin structure.  相似文献   

3.
Glycosylated structures on the cell surface have a role in cell adhesion, migration, and proliferation. Repair of the airway epithelium after injury requires each of these processes, but the expression of cell surface glycosylation of airway epithelial cells after injury is not known. We examined cell surface glycosylation using lectin-binding profiles of normal and repairing epithelia in Hartley guinea pigs from 0 to 14 days after mechanical injury. The epithelium regenerated completely over 7 days. In normal trachea, galactose- or galactosamine-specific lectins (14 of 20 tested) labelled epithelial cells, but fucose, mannose, and other sugar-specific lectins (15 tested) did not. GSA-2, a glucosamine-specific lectin, labelled epithelial cells weakly in uninjured tracheas, but intense labelling was noted in basal and non-ciliated columnar cells adjacent to the injury site over 3h to 14 days after injury. Labelling of these cells peaked at 12h and 5 days after injury respectively. Similar patterns were seen with lectins AlloA and HAA but not with CPA during repair. The binding of the lectin DSA to proteins collected from primary cultures of airway epithelial cells decreased substantially after treatment for 24h with either transforming growth factor- or interleukin-1, but that of the CPA lectin did not. We demonstrate changes in glycosylation profiles of airway epithelial cells coordinate with repair after mechanical injury. These changes may be useful to study mechanisms by which repair is regulated.  相似文献   

4.
Thin sections and freeze-fracture replicas of the water-blood barrier in the gill lamellae of adult lampreys (Geotria australis, Lampetra fluviatilis) demonstrate that the occluding junctions between epithelial pavement cells differ markedly from those between endothelial pillar cells in the structure and arrangement of their strands. The zonulae occludentes between pavement cells typically consist of complex networks of 4–6 strands, the mean number of which undergoes a small but significant decline when the animal is acclimated to seawater. In comparison, the occluding junctions between pillar cells are less elaborate and may represent maculae or fasciae, rather than zonulae occludentes. They do not apparently undergo a change when the animal enters saltwater. The results indicate that the main part of the paracellular diffusion barrier to proteins and ions is located in the epithelium rather than the endothelium. Communicating (gap) junctions are present between adjacent pavement cells, between pavement and basal cells and between pillar cells. These findings suggest that the epithelial cells and the pillar cells in the water-blood barrier of lampreys both form functional syncytia. The results are discussed in the context of ion-transporting epithelia in other aquatic vertebrates.This paper is dedicated to Professor H. Leonhardt on the occasion of his 75th birthday  相似文献   

5.
Summary Exposure of the rabbit corneal surface to a 20-m digitonin-0.9% NaCl solution leads to permeabilization of the most superficial cells of the stratified epithelium. The devitalized cells exfoliate spontaneously from the corneal surface. Detergent exposure limited to 4–8 min leads to permeabilization and rapid exfoliation of a monolayer of surface cells. Consistent with the presence of the epithelial paracellular permeability barrier in this cell layer, their permeabilization results in complete loss of transepithelial resistance (R t ). Within minutes after detergent removal an initial recovery ofR t can be noticed indicating generation of a new paracellular permeability barrier by the viable subsurface cells. This recovery proceeds rapidly andR t reaches within 70 min a maximum equal to > 90% of the preexfoliation values (=2.43 k·cm2,n=22). TheR t recovery is fully blocked in a reversible manner by 10 m dihydrocytochalasin B. The recovery is not affected by inhibition of protein synthesis with 5 m cycloheximide. When the ocular surface is treated again with digitonin the permeabilization and exfoliation of a monolayer of cells and loss ofR t are repeated. After the second detergent exposure an initial recovery ofR t occurs as before within minutes. However, the pace ofR t recovery is much slower: 4–5 hr are required to reach a stable maximalR t values amounting to about 73% of initial control. This recovery can be fully blocked by 5 m cycloheximide indicating that protein synthesis is required for generation of tight junctions by the second subcellular layer. With only a fraction ofR t recovered, short-circuit currents amounting to, at least, 50% of control values and attributable in part to cell-to-tear movement of Cl through the apical surface can be measured. This suggests that apical-type Cl channels are either present in the apically facing membrane of subsurface cells or that they are rapidly inserted in it from preexisting intracellular pools immediately following the devitalization of the surface cells by digitonin.  相似文献   

6.
Summary Protamine, a naturally occurring arginine-rich polycationic protein (pI 9.7 to 12), was tested inNecturus gallbladder using a transepithelial AC-impedance technique. Protamine sulfate or hydrochloride (100 g/ml=20 m), dissolved in the mucosal bath, increased transepithelial resistance by 89% without affecting the resistance of subepithelial layers. At the same time, transepithelial voltage ( ms ) turned from slightly mucosapositive values to mucosa-negative values of approximately +1 to –5 mV. The effect of protamine on transepithelial resistance was minimal at concentrations below 5 g/ml but a maximum response was achieved between 10 and 20 g/ml. Resistance started to increase within 1 min and was maximal after 10 min. These effects were not inhibited by serosal ouabain (5×10–4 m) but could be readily reversed by mucosal heparin. The sequence of protamine effect and heparin reversal could be repeated several times in the same gallbladder. Mucosal heparin, a strong negatively charged mucopolysaccharide, or serosal protamine were without effect. Mucosal protamine reversibly decreased the partial ionic conductance of K and Na by a factor of 3, but did not affect Cl conductance. Net water transport from mucosa to serosa was reversibly increased by 60% by protamine. We conclude that protamine reversibly decreases the conductance of the cation-selective pathway through the tight junction. Although this effect is similar to that reported for 2,4,6-triamino-pyrimidinium (TAP), the mechanism of action may differ. We propose that protamine binds to the apical cell membrane and induces a series of intracellular events which leads to a conformational alteration of the tight junction structure resulting in decreased cationic permeability.  相似文献   

7.
Summary A simple continuous epithelium surrounds the body of the pelagic larvacean. It consists of two zones of cells: oikoplast cells and flattened cells. The oikoplast cells are columnar and produce a thick extracellular house that ensheathes the body of the organism. These cells are joined laterally by wide tight junctions (zonulae occludentes). The tail of the animal is surrounded by exceedingly thin cells which are joined by narrow tight junctions under which lie intermediate junctions (zonulae adhaerentes) and gap junctions. A web of fibrous material inserts into the intermediate junctions. The transitional cells between the two epithelial zones have one lateral border with a wide tight junction, and the other lateral border with a narrow tight junction and a wide intermediate junction. In freeze-fracture replicas, the wide tight junction has a number of anastomosing ridges, in comparison with the narrow tight junction, which usually consists of only a single row of intramembranous particles. In replicas, the thin epithelial cells show unusual parallel arrays of particles in clusters on their apical plasma membranes. This simple epithelium, therefore, exhibits striking differences between the two cellular zones, in the structural characteristics of both the lateral borders and the apical membrane.  相似文献   

8.
Summary The evaluation of the intracellular signal train and its regulatory function in controlling transepithelial transport with electrophysiological methods often requires intracellular measurements with microelectrodes. However, multiple impalements in epithelial cells are hampered by the small size of the cells. In an attempt to avoid these problems we fused cells of an established cell line, Madin Darby canine kidney cells, originally derived from dog kidney, to giant cells by applying a modified polyethylene glycol method. During trypsin-induced detachment from the ground of the petri dish, individual cells grown in a monolayer incorporate volume and mainly lose basolateral plasma membrane by extrusion. By isovolumetric cell-to-cell fusion, spherical giant cells are formed within 2 hr. During this process a major part of the individual cell plasma membranes is internalized. Over three weeks following cell plasma membrane fusion degradation of single cell nuclei and cell nuclear fusion occurs. We conclude that this experimental approach opens the possibility to investigate ion transport of epithelia in culture by somatic cell genetic techniques.  相似文献   

9.
Summary The fine structure of amniotic and amniotic-plaque epithelia has been studied from normal term pregnancies. The columnar/cuboidal amniotic epithelial cells usually have apical or central nuclei, some free ribosomes, patches of granular endoplasmic reticulum, juxtanuclear Golgi complexes, rod-shaped mitochondria, lipid droplets and some glycogen granules. They have short, blunt microvilli which frequently branch and bathe in the amniotic fluid. The lateral plasma membranes enclose tortuous intercellular spaces which are always interrupted by variously folded processes and desmosomes. The epithelial cells rest on a basal lamina and exhibit highly folded basal processes. The amniotic epithelial cells are neither distinctly Golgi and fibrillar types nor light and dark in appearance.Amnion from near the umbilical cord contains many microscopic and several large plaques. Similar structures are not found on the reflected amnion. The microscopic plaques are whitish and translucent, whereas the large ones are opaque. The large plaques vary between 1–3 mm in diameter, and are over 15 cell layers thick. Each large plaque has a main central region and edges continuous with either the microscopic plaque or the simple amniotic epithelium. The main region shows four zones, namely, stratum basale, stratum spinosum, stratum granulosum and stratum corneum. Such zones are not distinct at the edges. The fine structure of basal cells compares with the amniotic epithelial cells, but the cells of spinosum and granulosum layers possess variable amounts of tonofibrils, keratohyalin granules, free ribosomes and other cytoplasmic organelles and inclusions. The corneum cells are keratinized and are frequently separated by intercellular spaces. They slough into the amniotic cavity singly or as a sheet, and contribute towards the composition of the amniotic fluid. The plaques are of amniotic origin, and are not formed by adhesion of either squamous cells or fetal skin cells (masses of keratinized squames). The present observations suggest that the occurrence of amniotic plaques is normal. The presence of plaques may not be necessarily associated with fetal abnormality. However, increase in numbers of plaques may be caused by conditions of fluid imbalance. The homology and significance of plaques in eutherian mammals have been discussed.This research was supported by USPHS Grant AM-11376 and NIH Grant 69-2136.  相似文献   

10.
In vivo restitution of airway epithelium   总被引:10,自引:0,他引:10  
Epithelial shedding occurs in health and, extensively, in inflammatory airway diseases. This study describes deepithelialisation, reepithelialisation and associated events in guinea-pig trachea after shedding-like epithelial denudation in vivo. Mechanical deepithelialisation of an 800-m wide tracheal zone was carried out using an orotracheal steel probe without bleeding or damage to the basement membrane. Reepithelialisation was studied by scanning- and transmission electron microscopy and light microscopy. Nerve fibres were examined by immunostaining. Cell proliferation was analysed by [3H]-thymidine autoradiography. Immediately after epithelial removal secretory and ciliated (and presumably basal) epithelial cells at the wound margin dedifferentiated, flattened and migrated rapidly (2–3 m/min) over the denuded basement membrane. Within 8–15 h a new, flattened epithelium covered the entire deepithelialised zone. At 30 h a tight epithelial barrier was established and after 5 days the epithelium was fully redifferentiated. After completed migration an increased mitotic activity occurred in the epithelium and in fibroblasts/smooth muscle beneath the restitution zone. Reinnervating intraepithelial calcitonin gene-related peptide-containing nerve fibres appeared within 30 h. We conclude that (1) reproducible shedding-like denudation, without bleeding or damage to the basement membrane, can be produced in vivo; (2) secretory and ciliated cells participate in reepithelialisation by dedifferentiation and migration; (3) the initial migration is very fast in vivo; (4) shedding-like denudation may cause strong secretory and exudative responses as well as proliferation of epithelium, and fibroblasts/smooth muscle. Rapid restitution of airway epithelium may depend on contributions from the microcirculation and innervation.  相似文献   

11.
Summary Effects of cycloheximide (CHM) on preprophase bands (PPBs) of microtubules (MTs) and on prophase spindle MTs in root tip cells of onion (Allium cepa L.) were examined. When root tip cells were treated with 36 M CHM for 0.5–4 h, the population of cells with a PPB did not decrease markedly although the population of mitotic cells and that of prophase cells with a PPB gradually decreased to half of the control root tips. In prophase cells treated with 11 and 36 M CHM for 2 h, the width of the PPB was 1.4 times broader than that in the prophase PPB without CHM. Electron microscopic observation on the cross section of the PPB showed that the number of MTs and the distance between adjacent MTs in prophase PPBs treated with CHM were similar to those in the early developmental stage of PPBs without CHM. The bipolar spindle, that appeared in late prophase was not seen in prophase cells treated with 11 M or higher concentrations of CHM for 2 h. In order to examine differences of perinuclear MT arrangement between CHM treated and non-treated prophase cells, arrangement of perinuclear MTs was examined by confocal laser scanning microscopy. In control cells without CHM, MTs appeared on the nuclear surface with several branched or cross over type MT foci in the cytoplasm when broad PPB formation started. These MT foci were replaced by the aster type MT foci, from which several MTs radiated along the nuclear surface. The aster type MT foci gradually gathered to form a bipolar spindle. MTs connecting the spindle pole region and the PPB were seen in late prophase. In CHM-treated cells (11-360 M for 2 h), branched and cross over type MT foci were prominent, even in prophase cells with well condensed chromosomes. Neither linkages of MTs between the spindle pole region and the PPB nor aster type MT foci were seen. These observations showed that CHM prevents the bundling of MTs in the PPB and also inhibits the formation of aster type MT foci that is essential for bipolar spindle development.  相似文献   

12.
Tight Junctions of the Blood–Brain Barrier   总被引:17,自引:0,他引:17  
1. The blood–brain barrier is essential for the maintainance and regulation of the neural microenvironment. The blood–brain barrier endothelial cells comprise an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier. The latter is realized by the tight junctions between the endothelial cells of the brain microvasculature, which are subject of this review. Morphologically, blood–brain barrier-tight junctions are more similar to epithelial tight junctions than to endothelial tight junctions in peripheral blood vessels.2. Although blood–brain barrier-tight junctions share many characteristics with epithelial tight junctions, there are also essential differences. However, in contrast to tight junctions in epithelial systems, structural and functional characteristics of tight junctions in endothelial cells are highly sensitive to ambient factors.3. Many ubiquitous molecular constituents of tight junctions have been identified and characterized including claudins, occludin, ZO-1, ZO-2, ZO-3, cingulin, and 7H6. Signaling pathways involved in tight junction regulation comprise, among others, G-proteins, serine, threonine, and tyrosine kinases, extra- and intracellular calcium levels, cAMP levels, proteases, and TNF. Common to most of these pathways is the modulation of cytoskeletal elements which may define blood–brain barrier characteristics. Additionally, cross-talk between components of the tight junction– and the cadherin–catenin system suggests a close functional interdependence of the two cell–cell contact systems.4. Recent studies were able to elucidate crucial aspects of the molecular basis of tight junction regulation. An integration of new results into previous morphological work is the central intention of this review.  相似文献   

13.
Mukhtarov  M. R.  Malomouzh  A. I.  Nikolsky  E. E.  Urazaev  A. Kh. 《Neurophysiology》2002,34(2-3):188-189
It was shown that glutamate (10 M to 1 M) suppresses in a dose-dependent manner the non-quantum release of acetylcholine from rat motor nerve endings; the release intensity was estimated by the H effect. The action of glutamate was completely eliminated by the blockade of guanylyl cyclase by 1 M ODQ. An increase in the intracellular cGMP concentration by 1 M dibutyryl-cGMP reduced the H effect in a similar manner as glutamate did.  相似文献   

14.
Summary Two major cell types, goblet and absorptive cells, dominate the epithelial lining of small intestinal villi. We used freezefracture replicas of rat ileal mucosa to examine the possibility that tight junction structure, known to relate to transepithelial resistance, might vary with cell type. Tight junctions between absorptive cells were uniform in structure while those associated with villus goblet cells displayed structural variability. In 23% of villus goblet cell tight junctions the strand count was less than 4 and in 30% the depth was less than 200 nm. In contrast, only 4% of absorptive cell tight junctions had less than 4 strands and only 9% had depth measurements less than 200 nm. Other structural features commonly associated with villus goblet cell tight junctions but less commonly with absorptive cell tight junctions were: deficient strand cross-linking, free-ending abluminal strands, and highly fragmented strands. Bothin vivo ileal segments and everted loops were exposed to ionic lanthanum. Dense lanthanum precipitates in tight junctions and paracellular spaces were restricted to a subpopulation of villus goblet cells and were not found between villus absorptive cells. After exposure of prefixed ileal loops to lanthanum for 1 hour, faint precipitates of lanthanum were found in 14% of tight junctions and paracellular spaces between absorptive cells compared to 42% of tight junctions and paracellular spaces adjacent to villus goblet cells. When tested in Ussing chambers, the methods used for lanthanum exposure did not lower transepithelial resistance. Everted loops exposed to ionic barium and examined by light microscopy showed dense barium precipitates in the junctional zone and region of the paracellular space of villus goblet cells but not in these regions between absorptive cells. However, the macromolecular tracers, microperoxidase, cytochromec and horseradish peroxidase, were excluded from both villus goblet cell and absorptive cell paracellular spaces inin vivo segments. These findings suggest that a subpopulation of villus goblet cells may serve as focal sites of high ionic permeability and contribute to the relatively low resistance to ionic flow which characterizes the small intestinal epithelium.  相似文献   

15.
Bruno Viertel 《Zoomorphology》1985,105(6):345-355
Summary In larvae of Rana temporaria and Bufo bufo the location of filter apparatus within the larval organization, the arrangement of the morphological parts as branchial food trap, ventral velum, and filter rows, as well as their surface anatomy, are similar to that of other species of Orton's larval type IV. The means by which mucous with its entrapped food particles is transported from the filter rows to the esophagus is finally resolved. The dorsally positioned ciliary cushion extends far ventrally between the filter plates. From their contact with the filter rows, the cilia transport the mucous to Kratochwill's caudally positioned Flimmerrinne and from there to the esophagus. The original chordate principle of mucous entrapment and ciliary transport is thus retained by these anuran larvae. The only modification specific to the latter is the division into a ventral filter apparatus, whose epithelia serve for mucus entrapment, and a dorsal ciliary area.Six different types of cell may be distinguished ultrastructurally: (1) The ubiquitous squamous epithelium with merocrine extrusions; (2) the large supporting cells of the filter rows and of the ventral velum; (3) the ciliary cells of the ciliary cushion; (4) three different types of mucous producing secretory cells: (a) A type of cell similar to the goblet cell is found in the ciliary cushion (merocrine extrusion); (b) The secretory pits of the ventral velum and the secretory ridges have similar bottle-shaped merocrine secretory cells; (c) The merocrine apical cells of the filter rows are the final kind. It is evident that the ciliary cushion epithelium resembles that of both the manicotto glandulare of anuran larvae and the trachea and bronchus of Mammalia.Supported by the Deutsche Forschungsgemeinschaft-DFG  相似文献   

16.
Summary The structure of mesenchymal cells distributed in some of the hypendymal organs of the circumventricular system in the cat and rat was demonstrated after intravenous injection of high doses of horseradish peroxidase. These cellular elements were observed in the vicinity of blood vessels of the organon vasculosum laminae terminalis, subfornical organ and area postrema. Electron-microscopically, these cells located between the basal laminae of the brain parenchyma and the blood capillaries show long cellular processes encircling fenestrated capillaries. Light and electron-microscopic examination revealed that this cell type is identical with the horseradish peroxidase-uptake cells, previously reported in the vicinity of the hypophysial portal system. Such phagocytic cells may be considered as a cellular component intervening between the brain parenchyma and the blood stream, playing a role in selective barrier functions in the above-mentioned circumventricular organs where a blood-brain barrier in the classical sense of the definition is lacking.This work was supported by grant No. 437002 from the Ministry of Education, Science and Culture, Japan  相似文献   

17.
Synopsis A new distinctive and unique peroxisomal organelle with a spindle shape has been observed in luminal epithelial cells of striated and excretory ducts of mouse salivary glands. Light microscopic studies indicate it has an ellipsoidal centre from which catalase-positive filamentous or rod-like processes protrude along its major axis; hence, it is called a body. A role for this specialized peroxisome in the formation of nearby free filaments and rods is suggested by the frequent observation of segmentation of its axial processes. Complementary ultrastructural studies of osmium-fixed preparations show that the deformation to an oval shape results from the pressure of the extruding crystalloid coincident with the major axis of the ellipsoidal body. The size range and conformation of body axial processes are comparable to those of free catalase-positive rods and filaments observed in the same cells. The periodic substructure of the crystalloid in the body core is identical with that of nearby cytoplasmic rods. These observations are consistent with the view that the rods and filaments observed free in the cytoplasm are formed by extrusion from the crystalloid core of the body. Bodies could also be responsible for the Aver rods of leukemic leukocytes.  相似文献   

18.
Endocrine cells in the human fetal small intestine   总被引:1,自引:0,他引:1  
Summary In this report we describe the time of appearance and ultrastructural features of enteroendocrine cells (EECs) in the human fetal small intestine (SB) between 9 and 22 weeks gestation. Thirteen distinctive EECs were identified in fetal SB. Two of these, not found in normal adult SB, appeared within the stratified epithelium of the proximal SB at 9–10 weeks. They were arbitrarily termed primitive and precursor cells. As in all fetal EECs, the pale cytoplasm of the primitive cell contains a distinctive population of secretory granules (SGs). Primitive cell SGs average 200–330 nm; some have dense cores with lucent halos while others are filled with a homogeneous dense or flocculent material. The SGs of the precursor cells are larger, averaging up to 1 m in diameter and their contents vary in electron density. A third group of cells not described in normal adult SB was arbitrarily termed transitional cells. These have two populations of SGs; one resembles the SGs of the precursor cells, and the other resembles the SGs of some of the specific adult type EECs. Transitional EC, S, I and G cells are seen. In addition, mature appearing EC, S, G, I, L, D, and D1 cells were identified by 12 weeks of gestation. The primitive, precursor, and transitional cells may represent sequential developmental precursors of adult type EECs.Supported by Research Grant AM-17537 from the National Institutes of Health, Besthesda, MarylandThe authors would like to thank Ms. Linda Barstein for her excellent technical assistance  相似文献   

19.
Electron microscope observations on the early development of the rat   总被引:1,自引:0,他引:1  
Summary The early development of the rat, from the mature oocyte through fertilization until the 8-cell stage, has been studied with the electron microscope. The fine structure is described and discussed, with particular reference to the following topics. The middle piece of the spermatozoon is found in every stage studied, within the ovum cytoplasm; it is not significantly altered by this situation. The nucleoli are numerous during the 1-cell stage and often present in positions that suggest their extrusion into the cytoplasm; in subsequent stages a branching structure develops around them. The dividing cell presents the mitotic apparatus with its centrioles, hollow looking fibers, chromosomes, but without centromeres; in the cytoplasm the small granules align in rows. Mitochondria are evenly distributed during the 1-cell stage and can be found in the 8-cell stage constricted as if dividing. The multivesicular bodies constitute an abundant population of cytoplasmic elements that may be related to the endoplasmic reticulum or the Golgi complex, neither of which is clearly recognizable. In the 8-cell stage the cytoplasm segregates into two zones, one of which contains all the multivesicular bodies, while the mitochondria are found in both of them; this distinction provides some basis to adscribe to the multivesicular bodies the properties of the so called metachromatic particles.The support of the Gildemeister Foundation is gratefully acknowledged.  相似文献   

20.
Summary Nematocytes (stinging cells) of hydra tentacles are anchored to the basement membrane by peculiar complex junctions in which a flattened tongue of an epithelial cell is interposed between the nematocyte and the basement membrane. In this paper we describe the arrangement of these junctions with emphasis on how they are related to the architecture of the epithelial cell. Each epithelial cell, called a battery cell, harbors 10–20 nematocytes and bears muscle processes that extend along the basement membrane. The epithelial cell component of the complex junction is usually a lateral extension of a muscle process. All nematocytes within a battery cell make junctions with muscle processes of the same (resident) epithelial battery cell despite the presence of numerous muscle processes from adjacent (foreign) cells. Some nematocytes make junctions with several resident processes, spanning the foreign processes to do so. Most junctions reside near the proximal ends of the muscle processes. New findings are reported on the substructure of the junctions. They are composed of aggregates of smaller elements, and the cytoskeleton within the complexes has a pronounced longitudinal organization. These observations are consistent with a suggestion that the complex junctions develop by aggregation of smaller junctional units originating elsewhere on the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号