首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunochemical analysis of membrane vesicles from Escherichia coli.   总被引:4,自引:0,他引:4  
P Owen  H R Kaback 《Biochemistry》1979,18(8):1413-1422
Membrane vesicles isolated from Escherichia coli ML 308--225 have been analyzed by crossed immunoelectrophoresis, and immunoprecipitates corresponding to the following cellular components have been identified: ATPase (EC 3.6.1,3), two or three NADH dehydrogenases (EC 1.6.99.3), D-lactate dehydrogenase (EC 1.1.1.27), glutamate dehydrogenase (EC 1.4.1.4), dihydro-orotate dehydrogenase (EC 1.3.3.1), 6-phosphogluconate dehydrogenase (EC 1.1.1.43), polynucleotide phosphorylase (EC 2.3.7.8), beta-galactosidase (EC 3.2.1.23), lipopolysaccharide, and Braun's lipoprotein. The cellular origin of many of the vesicle immunogens is determined, and Braun's lipoprotein is used as a marker to quantitate the extent of outer membrane contamination (less than 3%). Membrane antigens are also characterized with regard to their amphiphilic or hydrophilic properties by charge-shift crossed immunoelectrophoresis. Furthermore, the following immunogens cross-react with components in membrane vesicles prepared from Salmonella typhimurium: one of the three NADH dehydrogenases, ATPase, polynucleotide phosphorylase, 6-phosphogluconate dehydrogenase, Braun's lipoprotein, and three unidentified antigens. In the accompanying paper [Owen, P., & Kaback, H. R. (1979) Biochemistry 18 (following paper in this issue)] quantitative immunoadsorption is utilized to establish the topology of the vesicles with respect to the distribution of antigens on the inner and outer faces of the membrane.  相似文献   

2.
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions.  相似文献   

3.
Isolated membrane fractions of Escherichia coli K-12 yielded complex immunoprecipitate patterns when Triton X-100 and sodium dodecyl sulfate extracts were examined by crossed immunoelectrophoresis with antienvelope immunoglobulins. Twelve of the 46 antigens in the immunoprecipitate patterns of inner (plasma) membranes were identified by zymograms and/or by the use of specific antisera. The following enzyme activities were detected in immunoprecipitates: 6-phosphogluconate dehydrogenase (EC 1.1.1.43); adenosine triphosphatase (EC 3.6.1.3); glutamate dehydrogenase (EC 1.4.1.4), two separate components; malate dehydrogenase (EC 1.1.1.37); dihydroorotate dehydrogenase (EC 1.3.3.1); succinate dehydrogenase (EC 1.3.99.1); lactate dehydrogeanse (EC 1.1.1.27); reduced nicotinamide adenine dinucleotide dehydrogenase (EC 1.6.99.3); protease (EC 3.4.21.1); and glycerol 3-phosphate dehydrogenase (EC 1.1.99.5). The corresponding immunoprecipitate pattern for isolated outer membranes consisted of at least 25 discrete antigens and differed strikingly from that obtained with inner membranes. Two major immunogens were identified as lipopolysaccharide and Braun lipoprotein. A protease-active immunoprecipitate was also detected in this fraction, but attempts to identify the Rosenbusch matrix protein in the crossed immunoelectrophoretic profile were unsuccessful.  相似文献   

4.
Yeast plasma membranes have been isolated from homogenized yeast cells, identified as pure plasma membrane vesicles which were used as antigens. By crossed immunoelectrophoresis with anti-membrane immunoglobulins, 17 discrete antigens have been detected in Triton X-100 extracts from plasma membranes. Three different immunoabsorption experiments were performed with : a) isolated membranes exposing the cytoplasmic surfaces (PS) and the external surfaces (ES), b) yeast protoplasts exposing only antigenic determinants on the ES, c) lysed protoplasts which had been saturated on the ES with antibodies prior to lysis. These absorption experiments demonstrated that seven of the antigens are expressed on the ES while eight immunogens expose antigenic determinants on the PS. Four of the principal immunoprecipitates are not affected by absorption with surface antigens whereas two of the antigens indicate transmembrane characteristics. Of these 17 immunoprecipitates four were shown by zymograms to possess enzymatic activities: ATPase (EC 3.6.1.3) and NADH-dehydrogenase (EC 1.8.99.3) (three separate components). Three of these enzymes are expressed on the PS, and one NADH-dehydrogenase exposes determinants on the ES of the protoplasts. The presence of antigens on the PS of the plasma membrane could also be demonstrated on micrographs by the indirect ferritin-antibody labeling technique followed by freeze-etching and shadowing of the membranes.  相似文献   

5.
Membrane-bound antigens of the respiratory chain of Micrococcus luteus were analyzed by crossed immunoelectrophoresis after growth of the organism in the presence of 59Fe, the flavin adenine dinucleotide-flavin mononucleotide precursor D-[2-14C]riboflavin, or the heme precursor 5-amino-[4-(14)C]levulinic acid. Using zymograms and procedures of selective extraction in conjunction with autoradiography, it was possible to resolve and partially characterize a number of antigens. Succinate dehydrogenase (EC 1.3.99.1) was shown to possess covalently bound flavin and nonheme iron and was possibly present as a complex with cytochrome. Three other dehydrogenases, namely, NADH dehydrogenase, NAD(P)H dehydrogenase (EC 1.6.99.3), and malate dehydrogenase (EC 1.1.1.37), contained flavin in noncovalent linkage, the NAD(P)H dehydrogenase also possessing nonheme iron. Four other discrete antigens (or antigen complexes) containing both iron and heme centers also resolved, as were two minor immunogens possessing iron as the sole detectable prosthetic group.  相似文献   

6.
1. Plasma membranes were isolated from Krebs II ascite cells grown in the mouse. Cells were disrupted by nitrogen cavitation in an isotonic alkaline buffer containing magnesium and ATP. Isolation was performed in an alkaline-buffered self-generating gradient of Percoll with an angular rotor. At each step of the preparation, the pH appeared as the critical aspect of our procedure. 2. External membrane markers were concanavalin A and 5'-nucleotidase (EC 3.1.3.5). They reached a relative specific activity of 10, whereas this value was only of 0.7 for the endoplasmic reticulum marker, NADH dehydrogenase (EC 1.6.99.3). 3. Plasma membrane from 4 ml packed cells were isolated within 1 h after homogenization with good yield: 50% and 67% of total [3H]concanavalin A and 5'-nucleotidase, respectively, were recovered in the two plasma membrane fractions. 4. Electron microscopy examination showed the presence of vesicles of different sizes devoid of other structural contaminants. 5. Using the specific binding of concanavalin A to the external cell membrane, it was calculated that about 50% of the total cell phospholipid and 10% protein are located in the plasma membrane. Their sphingomyelin content is much higher than in the whole cell, in contrast to phosphatidylinositol, known as a more specific endoplasmic reticulum phospholipid.  相似文献   

7.
Orientation of ferrochelatase in bovine liver mitochondria   总被引:11,自引:0,他引:11  
The orientation of ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, was examined in bovine liver mitochondria. The ability of a membrane-impermeable sulfhydryl reagent, 4,4'-dimaleimidylstilbene-2,2'-disulfonic acid, to inactivate ferrochelatase in intact or disrupted mitochondria and mitoplasts was examined. Using succinate dehydrogenase as an internal marker, it was found that ferrochelatase was inactivated only in disrupted mitochondria and mitoplasts, suggesting an internal location for the active site of the enzyme. In addition, antibodies raised against purified ferrochelatase were found to inhibit activity only in disrupted but not in intact mitoplasts. These data demonstrate that in bovine liver mitochondria ferrochelatase is located on the matrix side of the inner mitochondrial membrane. Data obtained with the membrane-impermeable amino reagent isethionyl acetimidate indicate that ferrochelatase physically spans the inner mitochondrial membrane with portions of the protein exposed on both sides of the membrane.  相似文献   

8.
Triton X-100-insoluble residues from Micrococcus lysodeikticus membranes were analyzed by crossed immunoelectrophoresis after dispersal of the residues in sodium dodecyl sulfate (SDS). Conditions which produce no obvious distortion of the immunoprecipitate profile and which allow qualitative and quantitative analyses of the antigens present in the extracts are described. Two main antigens were detected; these were identified as succinate dehydrogenase (EC 1.3.99.1) and adenosine triphosphatase (EC 3.6.1.3). As determined by peak area estimations, the maximal release of succinate dehydrogenase and of adenosine triphosphatase from Triton X-100-insoluble membrane residues occurred at protein/SDS ratios of about 4.3:1 (0.2% SDS) and 6.8:1 (0.13% SDS), respectively. A comparison of enzyme activities of SDS extracts with those of untreated, control Triton X-100-insoluble membrane residues indicated that both the succinate dehydrogenase and the adenosine triphosphatase antigens were released with a full (or enhanced) catalytic potential at or below concentrations of SDS required to effect maximal solubilization of the enzyme in question. Evidence is also presented to suggest that the more acidic of the two components detected by crossed immunoelectrophoresis for the heterogeneous adenosine triphosphatase antigen is more sensitive to SDS than is the other. Both succinate dehydrogenase and adenosine triphosphatase lost catalytic activity and were denatured at protein/SDS ratios lower than 3.4:1.  相似文献   

9.
An analog of lysophosphatidylcholine (1-dodecyl-propanediol-3-phosphocholine) which does not impair membrane-bound enzymes was used for the induction of shedding of membrane vesicles from intact calf thymocytes. Without liberation of intracellular enzymes such as lactate dehydrogenase (EC 1.1.1.27) the shedded membranes contained 15--25% of the total activity of the plasma membrane enzymes alkaline phosphatase (EC 3.1.3.1), nucleotide pyrophosphatase (EC 3.1.4.1) and gamma-glutamyl transferase (EC 2.3.2.2). Membrane-free supernatants only exhibited trace activities of these enzymes. Without further purification, the specific enzyme activities in shedded membranes were of the same order of magnitude as in purified plasma membranes prepared after nitrogen cavitation of thymocytes. Small amounts of membrane vesicles which showed a different composition could be removed without detergent. These membranes exhibited a 3-fold lower specific activity of the gamma-glutamyl transferase while that of the alkaline phosphatase and nucleotide pyrophosphatase was similar as in detergent induced membrane vesicles. Distinct differences also were found in the protein pattern. The content of total cholesterol and phospholipid in vesicles shed spontaneously or after detergent treatment was nearly identical, however, significant differences were found in the fatty acid composition of the main phospholipids. The content of polyunsaturated fatty acids (linoleic and arachidonic acid) increased in the order: spontaneously shedded membranes, detergent induced vesicles, conventional purified plasma membranes. These results are discussed in terms of the heterogeneous composition of areas of the thymocyte plasma membrane.  相似文献   

10.
A simple preparative method is described for isolation of the cytoplasmic and outer membranes from E. coli. The characteristics of both membrane fractions were studied chemically, biologically, and morphologically. Spheroplasts of E. coli K-12 strain W3092, prepared by treating cells with EDTA-lysozyme [EC 3.2.1.17], were disrupted in a French press. The crude membrane fraction was washed with 3 mM EDTA-10% (w/v) sucrose, pH 7.2, and the cytoplasmic membranes and outer membranes were separated by sucrose isopycnic density gradient centrifugation. The crude membrane fraction contained approximately 10% of the protein of the whole cells, 0.3% of the DNA, 0.7% of the RNA, 0.3% of the peptidoglycan, and about 30% of the lipopolysaccharide. The cytoplasmic membrane fraction was rich in phospholipid, while the outer membrane fraction contained much lipopolysaccharide and carbohydrate; the relative contents of lipopolysaccharide and carbohydrate per mg protein in the cytoplasmic membrane fraction were 12 and 40%, respectively, of the contents in the outer membrane fraction. Cytochrome b1, NADH oxidase, D-lactate dehydrogenase [EC 1.1.1.28], succinate dehydrogenase [EC 1.3.99.1], ATPase [EC 3.5.1.3], and activity for concentrative uptake of proline were found to be localized mainly in the cytoplasmic membranes; their specific activities in the outer membrane fraction were 1.5 to 3% of those in the cytoplasmic membrane fraction. In contrast, a phospholipase A appeared to be localized mainly in the outer membranes and its specific activity in the cytoplasmic membrane fraction was only 5% of that in the outer membrane fraction. The cytoplasmic and outer membrane fractions both appeared homogeneous in size and shape and show vesicular structures by electron microscopy. The advantages of this method for large scale preparation of the cytoplasmic and outer membrane fractions are discussed.  相似文献   

11.
Membrane vesicles of Escherichia coli prepared by osmotic lysis of lysozyme ethylenediaminetetracetate (EDTA) spheroplasts have approximately 60% of the total membrane-bound reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase (ED 1.6.99.3) and Mg2+-adenosine triphosphatase (ATPase) (EC 3.6.1.3) activities exposed on the outer surface of the inner membrane. Absorption of these vesicles with antiserum prepared against the purified soluble Mg2+-ATPase resulted in agglutination of approximately 95% of the inner membrane vesicles, as determined by dehydrogenase activity, and about 50% of the total membrane protein. The unagglutinated vesicles lacked all dehydrogenase activity and may consist of outer membrane. Lysozyme-EDTA vesicles actively transported calcium ion, using either NADH or adenosine 5'-triphosphate (ATP) as energy source. However, neither D-lactate nor reduced phenazine methosulfate energized calcium uptake, suggesting that the observed calcium uptake was not due to a small population of everted vesicles. Transport of calcium driven by either NADH or ATP was inhibited by simultaneous addition of D-lactate or reduced phenazine methosulfate. Proline transport driven by D-lactate oxidation was inhibited by either NADH oxidation or ATP hydrolysis. These results suggest that the portion of the total population of vesicles capable of active transport, i.e., the inner membrane vesicles, are functionally a homogeneous population but cannot be categorized as either right-side-out or everted, since activities normally associated with only one side of the inner membrane can be found on both sides of the membrane of these vesicles. Moreover, the data indicate that oxidation of NADH or hydrolysis of ATP by externally localized NADH dehydrogenase or Mg2+-ATPase establishes a protonmotive force of the opposite polarity from that established through D-lactate oxidation.  相似文献   

12.
Experiments were performed to localize the hepatic microsomal enzymes of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol biosynthesis to the cytoplasmic or lumenal surface of microsomal vesicles. Greater than 90 percent of the activities of fatty acid-CoA ligase (EC 6.2.1.3), sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15), lysophosphatidic acid acyltransferase, diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2), and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) was inactivated by proteolysis of intact microsomal vesicles. The phosphatidic acid phosphatase (EC 3.1.3.4) was not inactivated by any of the protease tested. Under conditions employed, <5 percent of the luminal mannose-6-phosphatase (EC 3.1.3.9) activity was lost. After microsomal integrity was disrupted with detergents, protease treatment resulted in a loss of >74 percent of the mannose-6-phosphatase activity. The latency of the mannose-6-phosphatase activity was not affected by protease treatment. Mannose-6-phosphatase latency was not decreased by the presence of the assay components of several of the lipid biosynthetic activities, indicating that those components did not disrupt the microsomal vesicles. None of the lipid biosynthetic activities appeared latent. The presence of a protease-sensitive component of these biosynthetic activities on the cytoplasmic surface of microsomal vesicles, and the absence of latency for any of these biosynthetic activities suggest that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. The location of biosynthetic activities within the transverse plane of the endoplasmic reticulum is of particular interest for enzymes whose products may be either secreted or retained within the cell. Phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol account for the vast majority of hepatic glycerolipid biosynthesis. The phospholipids are utilized for hepatic membrane biogenesis and for the formation of lipoproteins, and the triacylglycerols are incorporated into lipoproteins or accumulate within the hepatocyte in certain disease states (14). The enzymes responsible for the biosynthesis of these glycerolipids (Scheme I) from fatty acids and glycerol-3P have all been localized to the microsomal subcellular fraction (12, 16, 29, 30). Microsomes are derived from the endoplasmic reticulum and are sealed vesicles which maintain proper sidedness. (11, 22). The external surface of these vesicles corresponds to the cytoplasmic surface of the endoplasmic reticulum. Macromolecules destined for secretion must pass into the lumen of the endoplasmic reticulum (5, 23). Uncharged molecules of up to approximately 600 daltons are able to enter the lumen of rat liver microsomes, but macromolecules and charged molecules of low molecular weight do not cross the vesicle membrane (10, 11). Because proteases neither cross the microsomal membrane nor destroy the permeability barrier of the microsomal vesicles, only the enzymes and proteins located on the cytoplasmic surface of microsomal vesicles are susceptible to proteolysis unless membrane integrity is disrupted (10, 11). By use of this approach, several enzymes and proteins have been localized in the transverse plane of microsomal membranes (11). With the possible exception of cytochrome P 450, all of the enzymes and proteins investigated were localized asymmetrically by the proteolysis technique (11). By studies of this type, as well as by product localization, glucose-6-phosphate (EC 3.1.3.9) has been localized to the luminal surface of microsomal vesicles (11) and of the endoplasmic reticulum (18, 19). All microsomal vesicles contain glucose-6-phosphatase (18, 19) which can effectively utilize mannose-6-P as a substrate, provided the permeability barrier of the vesicles has been disrupted to allow the substrate access to the active site located on the lumenal surface (4). An exact correspondence between mannose- 6-phosphate activity and membrane permeability to EDTA has been established (4). The latency of mannose-6-phosphatase activity provides a quantitative index of microsomal integrity (4.) Few of the microsomal enzymes in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol have been solubilized and/or purified, and little is known about the topography of these enzymes in the transverse or lateral planes of the endoplasmic reticulum. An asymmetric location of these biosynthetic enzymes on the cytoplasmic or lumenal surface of microsomal vesicles may provide a mechanism for regulation of the glycerolipids to be retained or secreted by the cell, and for the biogenesis of asymmetric phospholipid bilayers. In this paper, we report investigations on the localization of all seven microsomal enzymes (Scheme I) in the biosynthesis of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, using the protease technique with mannose-6-phosphatase serving as luminal control activity. The latency of these lipid biosynthetic enzymes was also investigated, using the latency of mannose-6-phosphatase as an index of microsomal integrity.  相似文献   

13.
d-β-Hydroxybutyrate dehydrogenase of beef heart mitochondria is a lipid-requiring enzyme, bound to the inner membrane. The orientation of this enzyme in the membrane has been studied by comparing the characteristics of the enzyme in mitochondria and ‘inside-out’ submitochondrial vesicles. We observe that the enzymic activity is (1) latent in intact mitochondria; (2) relatively stable to trypsin digestion in mitochondria but rapidly inactivated in submitochondrial vesicles by this treatment; and (3) released more rapidly from submitochondrial vesicles by phospholipase A2 digestion than from mitochondria. Conclusive evidence that d-β-hydroxybutyrate dehydrogenase is localized on the matrix face of the mitochondrial inner membrane is provided by the correlation that the enzyme is released from submitochondrial vesicles before the membrane becomes leaky to cytochrome c. The arrangement of d-β-hydroxybutyrate dehydrogenase in the membrane is discussed within a generalized classification of the orientation of proteins in membranes. The evidence indicates that d-β-hydroxybutyrate dehydrogenase is an amphipathic molecule and as such is inlaid in the membrane, i.e. the enzyme is partially inserted into the hydrophobic milieu of the membrane, with the polar, functional end extending into the aqueous milieu.  相似文献   

14.
We demonstrated previously that products of linoleic and arachidonic acids, arising from enzymatic or non-enzymatic oxidation, inhibit ATP-dependent calcium accumulation into and promote release of calcium from vesicles derived from sarcoplasmic reticulum of guinea-pig heart. In the present study, direct enzymatic peroxidation of cardiac membrane lipids was performed and the effect on calcium transport was examined. Vesicles were preincubated at 37 degrees C with soybean lipoxygenase-1 (linoleate:oxygen oxidoreductase, EC 1.13.11.12) for up to 1 h prior to the initiation of calcium accumulation. The extent of membrane peroxidation was assessed by monitoring the production of malondialdehyde. Pretreatment of vesicles with lipoxygenase for 40 and 60 min markedly depressed calcium accumulation. The lipoxygenase-induced suppression of calcium transport was completely antagonized by nordihydroguaiaretic acid (1 microM), not at all by indomethacin (1 microM), and only partially by 5,8,11,14-eicosatetraynoic acid (0.3 microM). Low concentrations of calcium (10(-5)-5 X 10(-5) M) enhanced, and a high concentration (10(-3) M) inhibited lipoxygenase-induced peroxidation of membrane lipids. The calcium-accumulating ability of the vesicles was inversely related to the extent of membrane peroxidation. The vesicles which showed the highest degree of peroxidation in the presence of 5 X 10(-5) M calcium, accumulated the lowest amount of calcium. In contrast, calcium at 10(-3) M suppressed lipid peroxidation, resulting in higher calcium uptake than in vesicles peroxidized in the absence of calcium. Thus, calcium transport is depressed in microsomes undergoing lipoxygenase-induced peroxidation, a process which in turn is modulated by calcium.  相似文献   

15.
Cytoplasmic membranes were isolated from late-exponential phase Staphylococcus aureus 6539 P and the membrane proteins examined under non-denaturing conditions by thin-layer isoelectric focusing (TLIEF) in a pH 3.5-9.5 gradient. Isolated membrane preparations retained protein integrity as judged by the demonstration of membrane bound adenosine triphosphatase (ATPase) activity in addition to four other solubilized membrane enzyme markers. Membranes were effectively solubilized with 2.5% Triton X-100 (final concentration). Examination of Triton X-100 solubilized membrane preparations established the presence of 22 membrane proteins with isoelectric points between 3.7 and 6.0. The focused proteins displayed the following enzymatic activities and isoelectric points by zymogram methods: ATPase (EC 3.6.1.3), 4.20; malate dehydrogenase (EC 1.1.1.37), 3.90; lactate dehydrogenase (EC 1.1.1.27), 3.85; two membrane proteins exhibited multiple bands upon enzymatic staining NADH dehydrogenase (EC 1.6.99.3), 4.25, 4.35; succinate dehydrogenase (EC 1.3.99.1), 4.85, 5.10, 5.35.  相似文献   

16.
When purified D-amino acid dehydrogenase [Olsiewski, P. J., Kaczorowski, G. J., & Walsh, C. T. (1980) J. Biol. Chem. 255, 4487] is incubated with right-side-out membrane vesicles from Escherichia coli, the enzyme binds to the membrane in a time- and concentration-dependent manner. As a result, the vesicles acquire the ability to oxidize D-alanine and catalyze D-alanine-dependent active transport. Similarly, incubation of D-amino acid dehydrogenase with inside-out vesicles results in binding of enzyme and D-alanine oxidase activity. Antibody inhibition studies indicate that the enzyme is bound exclusively to the inner cytoplasmic surface of the membrane in native vesicles (i.e., membrane vesicles prepared from cells induced for D-amino acid dehydrogenase). In contrast, similar studies with reconstituted vesicles demonstrate that enzyme binds to the surface exposed to the medium regardless of the orientation of the membrane. Thus, enzyme bound to right-side-out vesicles is located on the opposite side of the membrane from where it is normally found. Remarkably, in the presence of D-alanine, reconstituted right-side-out and inside-out vesicles generate electrochemical proton gradients of similar magnitude but opposite polarity, indicating that enzyme bound to either surface of the membrane is physiologically functional. The results suggest that vectorial proton translocation via the respiratory chain occurs at a point distal to the site where electrons enter the respiratory chain from the primary dehydrogenase, a conclusion that is inconsistent with the notion that the dehydrogenase forms part of a proton-translocating loop.  相似文献   

17.
Cytoplasmic membranes were isolated from late-exponential phase Staphylococcus aureus 6538 P and the membrane proteins examined under non-denaturing conditions by thin-layer isoelectric focusing (TLIEF) in a pH 3.5–9.5 gradient. Isolated membrane preparations retained protein integrity as judged by the demostration of membrane bound adenosine triphosphatase (ATPase) activity in addition to four solubilzed membrane enzyme markers. Membranes were effectively solubilized with 2.5% Triton X-100 (final concentration). Examination of Triton X-100 solubilized membrane preparations established the presence of 22 membrane proteins with isoelectric points between 3.7 and 6.0. The focused proteins displayed the following enzymatic activities and isoelectric points by zymogram methods: ATPase (EC 3.6.1.3), 4.20; malate dehydrogenase (EC 1.1.1.37), 3.90; lactate dehydrogenase (EC 1.1.1.27), 3.85; two membrane proteins exhibited multiple bands upon enzymatic staining: NADH dehydrogenase (EC 1.6.99.3), 4.25, 4.35; succinate dehydrogenase (EC 1.3.99.1), 4.85, 5.10, 5.35.  相似文献   

18.
A procedure for the isolation and separation of three different subfractions of plasma membrane from the cellular slime mould Dictyostelium discoideum is described. The cells were disrupted by freeze-thawing in liquid N(2) and plasma membranes were purified by equilibrium centrifugation in a sucrose gradient. The cell surface was labelled with radioactive iodide by using the lactoperoxidase iodination method. Alkaline phosphatase was identified as a plasma-membrane marker by its co-distribution with [(125)I]iodide. 5'-Nucleotidase, which has been widely described as a plasma-membrane marker enzyme in mammalian tissues, was not localized to any marked extent in D. discoideum plasma membrane. The isolated plasma membranes showed a 24-fold enrichment of alkaline phosphatase specific activity relative to the homogenate and a yield of 50% of the total plasma membranes. Determination of succinate dehydrogenase and NADPH-cytochrome c reductase activities indicated that the preparation contained 2% of the total mitochondria and 3% of the endoplasmic reticulum. When the plasma-membrane preparation was further disrupted in a tight-fitting homogenizer, three plasma-membrane subfractions of different densities were obtained by isopycnic centrifugation. The enrichment of alkaline phosphatase was greatest in the subfraction with the lowest density. This fraction was enriched 36-fold relative to the homogenate and contained 19% of the total alkaline phosphatase activity but only 0.08% of the succinate dehydrogenase activity and 0.34% of the NADPH-cytochrome c reductase activity. Electron microscopy of this fraction showed it to consist of smooth membrane vesicles with no recognizable contaminants.  相似文献   

19.
The application of freeze-cleave electron microscopy to whole cells of Escherichia coli revealed that the particles exposed on the resulting two inner membrane faces are asymmetrically distributed. This method can therefore be used to determine the orientation of membrane vesicles from E. coli. Membrane vesicles freshly prepared in potassium phosphate buffer (K(+)-vesicles) by osmotic lysis of spheroplasts consisted almost entirely of right-side-out vesicles. Their size suggested that each cell gives rise to one vesicle. When the membrane vesicles were subjected to one cycle of freezing and thawing, the number of inside-out vesicles rose to about 25%. However, due to the small size of most of the inside-out vesicles, these contribute only 2 to 3% of the total membrane surface area of the preparation. The inside-out vesicles appear to arise from infoldings of the membrane of right-side-out vesicles. They also accumulate within the latter, thus producing multivesicular membrane sacs. Na(+)-vesicles (vesicles prepared in sodium phosphate buffer) subjected to freezing and thawing appeared to lose structural rigidity more than did K(+)-vesicles. In contrast to the membrane vesicles prepared by the osmotic lysis of spheroplasts, those obtained by breaking intact cells by a single passage through a French pressure cell were uniformly very small (only 40 to 110 nm in diameter); approximately 60 to 80% were inside-out. To reconcile the polarity of the membrane vesicles with the enzymic activities of such preparations, we propose that "dislocation" of membrane proteins occurs during osmotic lysis of spheroplasts.  相似文献   

20.
ATP-dependent calcium sequestration was previously localized in vesicles of mitotic apparatus isolated from sea urchins. We now demonstrate that the mitotic apparatus contains an ATP-regenerative system characterized as creatine kinase (EC 2.7.3.2). Mitotic apparatus isolated with vesicles intact converted ADP to ATP if phosphocreatine was present. Omission of ADP or phosphocreatine gave negligible ATP. When mitotic apparatus were washed with detergent-containing buffer to remove vesicles, their ability to produce ATP from ADP and phosphocreatine was reduced. Assays of creatine kinase activity using NADP+:glucose-6-phosphate dehydrogenase indicated that 70% of the creatine kinase activity was extractable with 0.5% Triton X-100. The insoluble residue containing the skeleton of the mitotic apparatus had the rest of the activity. Experiments with a luciferin/luciferase assay showed that Triton removed above 82% of the activity. Preparations of intact mitotic apparatus were free of cytochrome c oxidase (EC 1.9.3.1) activity and therefore free of mitochondria. About 10(8) mitotic apparatus (total volume about 1 liter) could produce 17 mmol of ATP/min when substrates were not limiting. The creatine kinase enzyme activity described herein and the previously described membrane vesicular calcium sequestration system are nonmitochondrial, integral constituents of the sea urchin mitotic apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号