首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA cleavage by type III restriction endonucleases requires two inversely oriented asymmetric recognition sequences and results from ATP-dependent DNA translocation and collision of two enzyme molecules. Here, we characterized the structure and mode of action of the related EcoP1I and EcoP15I enzymes. Analytical ultracentrifugation and gel quantification revealed a common Res(2)Mod(2) subunit stoichiometry. Single alanine substitutions in the putative nuclease active site of ResP1 and ResP15 abolished DNA but not ATP hydrolysis, whilst a substitution in helicase motif VI abolished both activities. Positively supercoiled DNA substrates containing a pair of inversely oriented recognition sites were cleaved inefficiently, whereas the corresponding relaxed and negatively supercoiled substrates were cleaved efficiently, suggesting that DNA overtwisting impedes the convergence of the translocating enzymes. EcoP1I and EcoP15I could co-operate in DNA cleavage on circular substrate containing several EcoP1I sites inversely oriented to a single EcoP15I site; cleavage occurred predominantly at the EcoP15I site. EcoP15I alone showed nicking activity on these molecules, cutting exclusively the top DNA strand at its recognition site. This activity was dependent on enzyme concentration and local DNA sequence. The EcoP1I nuclease mutant greatly stimulated the EcoP15I nicking activity, while the EcoP1I motif VI mutant did not. Moreover, combining an EcoP15I nuclease mutant with wild-type EcoP1I resulted in cutting the bottom DNA strand at the EcoP15I site. These data suggest that double-strand breaks result from top strand cleavage by a Res subunit proximal to the site of cleavage, whilst bottom strand cleavage is catalysed by a Res subunit supplied in trans by the distal endonuclease in the collision complex.  相似文献   

2.
Type III restriction enzymes are multifunctional heterooligomeric enzymes that cleave DNA at a fixed position downstream of a non-symmetric recognition site. For effective DNA cleavage these restriction enzymes need the presence of two unmethylated, inversely oriented recognition sites in the DNA molecule. DNA cleavage was proposed to result from ATP-dependent DNA translocation, which is expected to induce DNA loop formation, and collision of two enzyme-DNA complexes. We used scanning force microscopy to visualise the protein interaction with linear DNA molecules containing two EcoP15I recognition sites in inverse orientation. In the presence of the cofactors ATP and Mg(2+), EcoP15I molecules were shown to bind specifically to the recognition sites and to form DNA loop structures. One of the origins of the protein-clipped DNA loops was shown to be located at an EcoP15I recognition site, the other origin had an unspecific position in between the two EcoP15I recognition sites. The data demonstrate for the first time DNA translocation by the Type III restriction enzyme EcoP15I using scanning force microscopy. Moreover, our study revealed differences in the DNA-translocation processes mediated by Type I and Type III restriction enzymes.  相似文献   

3.
Type III restriction/modification systems recognize short non-palindromic sequences, only one strand of which can be methylated. Replication of type III-modified DNA produces completely unmethylated recognition sites which, according to classical mechanisms of restriction, should be signals for restriction. We have shown previously that suicidal restriction by the type III enzyme EcoP15I is prevented if all the unmodified sites are in the same orientation: restriction by EcoP15I requires a pair of unmethylated, inversely oriented recognition sites. We have now addressed the molecular mechanism of site orientation-specific DNA restriction. EcoP15I is demonstrated to possess an intrinsic ATPase activity, the potential driving force of DNA translocation. The ATPase activity is uniquely recognition site-specific, but EcoP15I-modified sites also support the reaction. EcoP15I DNA restriction patterns are shown to be predetermined by the enzyme-to-site ratio, in that site-saturating enzyme levels elicit cleavage exclusively between the closest pair of head-to-head oriented sites. DNA restriction is blocked by Lac repressor bound in the intervening sequence between the two EcoP15I sites. These results rule out DNA looping and strongly suggest that cleavage is triggered by the close proximity of two convergently tracking EcoP15I-DNA complexes.  相似文献   

4.
For efficient DNA hydrolysis, Type III restriction endonuclease EcoP15I interacts with two inversely oriented recognition sites in an ATP-dependent process. EcoP15I consists of two methylation (Mod) subunits and a single restriction (Res) subunit yielding a multifunctional enzyme complex able to methylate or to hydrolyse DNA. Comprehensive sequence alignments, limited proteolysis and mass spectroscopy suggested that the Res subunit is a fusion of a motor or translocase (Tr) domain of superfamily II helicases and an endonuclease domain with a catalytic PD…EXK motif. In the Tr domain, seven predicted helicase motifs (I, Ia, II–VI), a recently discovered Q-tip motif and three additional regions (IIIa, IVa, Va) conserved among Type III restriction enzymes have been identified that are predicted to be involved in DNA binding and ATP hydrolysis. Because DNA unwinding activity for EcoP15I (as for bona fide helicases) has never been found and EcoP15I ATPase rates are only low, the functional importance of the helicase motifs and regions was questionable and has never been probed systematically. Therefore, we mutated all helicase motifs and conserved regions predicted in Type III restriction enzyme EcoP15I and examined the functional consequences on EcoP15I enzyme activity and the structural integrity of the variants by CD spectroscopy. The resulting eleven enzyme variants all, except variant IVa, are properly folded showing the same secondary structure distribution as the wild-type enzyme. Classical helicase motifs I–VI are important for ATP and DNA cleavage by EcoP15I and mutations therein led to complete loss of ATPase and cleavage activity. Among the catalytically inactive enzyme variants three preserved the ability to bind ATP. In contrast, newly assigned motifs Q-tip, Ia and Va are not essential for EcoP15I activity and the corresponding enzyme variants were still catalytically active. DNA binding was only marginally reduced (2–7 fold) in all enzyme variants tested.  相似文献   

5.
Type III restriction enzymes have been demonstrated to require two unmethylated asymmetric recognition sites oriented head-to-head to elicit double-strand break 25–27 bp downstream of one of the two sites. The proposed DNA cleavage mechanism involves ATP-dependent DNA translocation. The sequence context of the recognition site was suggested to influence the site of DNA cleavage by the enzyme. In this investigation, we demonstrate that the cleavage site of the R.EcoP15I restriction enzyme does not depend on the sequence context of the recognition site. Strikingly, this study demonstrates that the enzyme can cleave linear DNA having either recognition sites in the same orientation or a single recognition site. Cleavage occurs predominantly at a site proximal to the DNA end in the case of multiple site substrates. Such cleavage can be abolished by the binding of Lac repressor downstream (3′ side) but not upstream (5′ side) of the recognition site. Binding of HU protein has also been observed to interfere with R.EcoP15I cleavage activity. In accordance with a mechanism requiring two enzyme molecules cooperating to elicit double-strand break on DNA, our results convincingly demonstrate that the enzyme translocates on DNA in a 5′ to 3′ direction from its recognition site and indicate a switch in the direction of enzyme motion at the DNA ends. This study demonstrates a new facet in the mode of action of these restriction enzymes.  相似文献   

6.
EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site-bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I-DNA pre-cleavage complexes. From the number and size distribution of loops formed, we conclude that the loops observed do not result from translocation, but are instead formed by a contact between site-bound EcoP15I and a nonspecific region of DNA. This conclusion is confirmed by a theoretical polymer model. It is further shown that translocation must play some role, because when translocation is blocked by a Lac repressor protein, DNA cleavage is similarly blocked. On the basis of these results, we present a model for restriction by type III restriction enzymes and highlight the similarities between this and other classes of restriction enzymes.  相似文献   

7.
8.
While it has been demonstrated that AdoMet is required for DNA cleavage by Type III restriction enzymes, here we show that in the presence of exogenous AdoMet, the head-to-head oriented recognition sites are cleaved only on a supercoiled DNA. On a linear DNA, exogenous AdoMet strongly drives methylation while inhibiting cleavage reaction. Strikingly, AdoMet analogue sinefungin results in cleavage at all recognition sites irrespective of the topology of DNA. The cleavage reaction in the presence of sinefungin is ATP dependent. The site of cleavage is comparable with that in the presence of AdoMet. The use of EcoP15I restriction in presence of sinefungin as an improved tool for serial analysis of gene expression is discussed.  相似文献   

9.
DNA cleavage by the type III restriction endonuclease EcoP1I was analysed on circular and catenane DNA in a variety of buffers with different salts. In the presence of the cofactor S-adenosyl methionine (AdoMet), and irrespective of buffer, only substrates with two EcoP1I sites in inverted repeat were susceptible to cleavage. Maximal activity was achieved at a Res2Mod2 to site ratio of approximately 1:1 yet resulted in cleavage at only one of the two sites. In contrast, the outcome of reactions in the absence of AdoMet was dependent upon the identity of the monovalent buffer components, in particular the identity of the cation. With Na+, cleavage was observed only on substrates with two sites in inverted repeat at elevated enzyme to site ratios (>15:1). However, with K+ every substrate tested was susceptible to cleavage above an enzyme to site ratio of approximately 3:1, including a DNA molecule with two directly repeated sites and even a DNA molecule with a single site. Above an enzyme to site ratio of 2:1, substrates with two sites in inverted repeat were cleaved at both cognate sites. The rates of cleavage suggested two separate events: a fast primary reaction for the first cleavage of a pair of inverted sites; and an order-of-magnitude slower secondary reaction for the second cleavage of the pair or for the first cleavage of all other site combinations. EcoP1I enzymes mutated in either the ATPase or nuclease motifs did not produce the secondary cleavage reactions. Thus, AdoMet appears to play a dual role in type III endonuclease reactions: Firstly, as an allosteric activator, promoting DNA association; and secondly, as a "specificity factor", ensuring that cleavage occurs only when two endonucleases bind two recognition sites in a designated orientation. However, given the right conditions, AdoMet is not strictly required for DNA cleavage by a type III enzyme.  相似文献   

10.
The Type III restriction endonuclease EcoP15I forms a hetero-oligomeric enzyme complex that consists of two modification (Mod) subunits and two restriction (Res) subunits. Structural data on Type III restriction enzymes in general are lacking because of their remarkable size of more than 400 kDa and the laborious and low-yield protein purification procedures. We took advantage of the EcoP15I-overexpressing vector pQEP15 and affinity chromatography to generate a quantity of EcoP15I high enough for comprehensive proteolytic digestion studies and analyses of the proteolytic fragments by mass spectrometry. We show here that in the presence of specific DNA the entire Mod subunit is protected from trypsin digestion, whereas in the absence of DNA stable protein domains of the Mod subunit were not detected. In contrast, the Res subunit is comprised of two trypsin-resistant domains of approximately 77-79 kDa and 27-29 kDa, respectively. The cofactor ATP and the presence of DNA, either specific or unspecific, are important stabilizers of the Res subunit. The large N-terminal domain of Res contains numerous functional motifs that are predicted to be involved in ATP-binding and hydrolysis and/or DNA translocation. The C-terminal small domain harbours the catalytic center. Based on our data, we conclude that both structural Res domains are connected by a flexible linker region that spans 23 amino acid residues. To confirm this conclusion, we have investigated several EcoP15I enzyme mutants obtained by insertion mutagenesis in and around the predicted linker region within the Res subunit. All mutants tolerated the genetic manipulation and did not display loss of function or alteration of the DNA cleavage position.  相似文献   

11.
For efficient DNA cleavage, the Type III restriction endonuclease EcoP15I communicates with two inversely oriented recognition sites in an ATP-dependent process. EcoP15I consists of methylation (Mod) and restriction (Res) subunits forming a multifunctional enzyme complex able to methylate or to cleave DNA. In this study, we determined by different analytical methods that EcoP15I contains a single Res subunit in a Mod(2)Res stoichiometry. The Res subunit comprises a translocase (Tr) domain carrying functional motifs of superfamily 2 helicases and an endonuclease domain with a PD..D/EXK motif. We show that the isolated Tr domain retains ATP-hydrolyzing activity and binds single- and double-stranded DNA in a sequence-independent manner. To localize the regions of DNA binding, we screened peptide arrays representing the entire Res sequence for their ability to interact with DNA. We discovered four DNA-binding regions in the Tr domain and two DNA-binding regions in the endonuclease domain. Modelling of the Tr domain shows that these multiple DNA-binding regions are located on the surface, free to interact with DNA. Interestingly, the positions of the DNA-binding regions are conserved among other Type III restriction endonucleases.  相似文献   

12.
EcoP15I is the prototype of the Type III restriction enzyme family, composed of two modification (Mod) subunits to which two (or one) restriction (Res) subunits are then added. The Mod subunits are responsible for DNA recognition and methylation, while the Res subunits are responsible for ATP hydrolysis and cleavage. Despite extensive biochemical and genetic studies, there is still no structural information on Type III restriction enzymes. We present here small-angle X-ray scattering (SAXS) and analytical ultracentrifugation analysis of the EcoP15I holoenzyme and the Mod(2) subcomplex. We show that the Mod(2) subcomplex has a relatively compact shape with a radius of gyration (R(G)) of ~37.4 ? and a maximal dimension of ~110 ?. The holoenzyme adopts an elongated crescent shape with an R(G) of ~65.3 ? and a maximal dimension of ~218 ?. From reconstructed SAXS envelopes, we postulate that Mod(2) is likely docked in the middle of the holoenzyme with a Res subunit at each end. We discuss the implications of our model for EcoP15I action, whereby the Res subunits may come together and form a "sliding clamp" around the DNA.  相似文献   

13.
DNA cleavage by Type III restriction enzymes is governed strictly by the relative arrangement of recognition sites on a DNA substrate—endonuclease activity is usually only triggered by sequences in head-to-head orientation. Tens to thousands of base pairs can separate these sites. Long distance communication over such distances could occur by either one-dimensional (1D) DNA translocation or 3D DNA looping. To distinguish between these alternatives, we analysed the activity of EcoPI and EcoP15I on DNA catenanes in which the recognition sites were either on the same or separate rings. While substrates with a pair of sites located on the same ring were cleaved efficiently, catenanes with sites on separate rings were not cleaved. These results exclude a simple 3D DNA-looping activity. To characterize the interactions further, EcoPI was incubated with plasmids carrying two recognition sites interspersed with two 21res sites for site-specific recombination by Tn21 resolvase; inhibition of recombination would indicate the formation of stable DNA loops. No inhibition was observed, even under conditions where EcoPI translocation could also occur.  相似文献   

14.
Electron microscopic examination of DNA intermediates formed by the restriction endonuclease of Escherichia coli B revealed supercoiled loops that are presumably formed during an ATP-dependent DNA translocation process in which the enzyme remains bound to the recognition site while tracking along the DNA helix to a cleavage site. The rate of DNA translocation during this process is at least 5000 base pairs/min at 37 degrees C. Even after all cleavages have been completed, complexes are seen that contain terminal loops or loop plus tail structures. During this later phase of the reaction, ATP is hydrolyzed at a rate which is dependent upon the size of the largest possible loop (or loop plus tail); this ATP hydrolysis can be terminated by one double-strand cleavage within the loop region between the recognition site and the terminus. To explain these results, it is hypothesized that after cleavage the enzyme cycles between a tracking (and possibly back-tracking) mode which is fueled by ATP hydrolysis and a relatively long static period in which ATP hydrolysis does not occur. While tracking, the enzyme would be bound both to the recognition site and to a distal site but, while static, the enzyme would be bound only at the recognition site of nonlooped molecules. This post-nuclease phase of the reaction is hypothesized to reflect a reaction whereby the enzyme initially scans DNA molecules before making a strand cleavage.  相似文献   

15.
Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism.  相似文献   

16.
Bacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition sequences on the invading DNA and degrading it after extensive ATP-driven translocation. DNA cleavage has been thought to occur as the result of a collision between two translocating enzyme complexes. Using atomic force microscopy (AFM), we show here that EcoKI dimerizes rapidly when bound to a plasmid containing two recognition sites for the enzyme. Dimerization proceeds in the absence of ATP and is also seen with an EcoKI mutant (K477R) that is unable to translocate DNA. Only monomers are seen when the enzyme complex binds to a plasmid containing a single recognition site. Based on our results, we propose that the binding of EcoKI to specific DNA target sequences is accompanied by a conformational change that leads rapidly to dimerization. This event is followed by ATP-dependent translocation and cleavage of the DNA.  相似文献   

17.
Type I restriction endonuclease holoenzymes contain methylase (M), restriction (R) and specificity (S) subunits, present in an M2:R2:S1 stoichiometry. These enzymes bind to specific DNA sequences and translocate dsDNA in an ATP-dependent manner toward the holoenzyme anchored at the recognition sequence. Once translocation is impeded, DNA restriction, which functions to protect the host cell from invading DNA, takes place. Translocation and DNA cleavage are afforded by the two diametrically opposed R-subunits. To gain insight into the mechanism of translocation, a detailed characterization of the ATPase activity of EcoR124I was done. Results show that following recognition sequence binding, ATP hydrolysis-coupled, bidirectional DNA translocation by EcoR124I ensues, with the R-subunits transiently disengaging, on average, every 515 bp. Macroscopic processivity of 2031(+/-184)bp is maintained, as the R-subunits remain in close proximity to the DNA through association with the methyltransferase. Transient uncoupling of ATP hydrolysis from translocation results in 3.1(+/-0.4) ATP molecules being hydrolyzed per base-pair translocated per R-subunit. This is the first clear demonstration of the coupling of ATP hydrolysis to dsDNA translocation, albeit inefficient. Once translocation is impeded on supercoiled DNA, the DNA is cleaved. DNA cleavage inactivates the EcoR124I holoenzyme partially and reversibly, which explains the stoichiometric behaviour of type I restriction enzymes. Inactivated holoenzyme remains bound to the DNA at the recognition sequence and immediately releases the nascent ends. The release of nascent ends was demonstrated using a novel, fluorescence-based, real-time assay that takes advantage of the ability of the Escherichia coli RecBCD enzyme to unwind restricted dsDNA. The resulting unwinding of EcoR124I-restricted DNA by RecBCD reveals coordination between the restriction-modification and recombination systems that functions to destroy invading DNA efficiently. In addition, we demonstrate the displacement of EcoR124I following DNA cleavage by the translocating RecBCD enzyme, resulting in the restoration of catalytic function to EcoR124I.  相似文献   

18.
EcoP15I DNA methyltransferase catalyzes the transfer of the methyl group of S-adenosyl-l-methionine to the N6 position of the second adenine within the double-stranded DNA sequence 5'-CAGCAG-3'. To achieve catalysis, the enzyme requires a magnesium ion. Binding of magnesium to the enzyme induces significant conformational changes as monitored by circular dichroism spectroscopy. EcoP15I DNA methyltransferase was rapidly inactivated by micromolar concentrations of ferrous sulfate in the presence of ascorbate at pH 8.0. The inactivated enzyme was cleaved into two fragments with molecular masses of 36 and 35 kDa. Using this affinity cleavage assay, we have located the magnesium binding-like motif to amino acids 355-377 of EcoP15I DNA methyltransferase. Sequence homology comparisons between EcoP15I DNA methyltransferase and other restriction endonucleases allowed us to identify a PD(X)n(D/E)XK-like sequence as the putative magnesium ion binding site. Point mutations generated in this region were analyzed for their role in methyltransferase activity, metal coordination, and substrate binding. Although the mutant methyltransferases bind DNA and S-adenosyl-l-methionine as well as the wild-type enzyme does, they are inactive primarily because of their inability to flip the target base. Collectively, these data are consistent with the fact that acidic amino acid residues of the region 355-377 in EcoP15I DNA methyltransferase are important for the critical positioning of magnesium ions for catalysis. This is the first example of metal-dependent function of a DNA methyltransferase. These findings provide impetus for exploring the role(s) of metal ions in the structure and function of DNA methyltransferases.  相似文献   

19.
Type I restriction endonucleases such as EcoR124I cleave DNA at undefined loci, distant from their recognition sequences, by a mechanism that involves the enzyme tracking along the DNA between recognition and cleavage sites. This mechanism was examined on plasmids that carried recognition sites for EcoR124I and recombination sites for resolvase, the latter to create DNA catenanes. Supercoiled substrates with either one or two restriction sites were linearized by EcoR124I at similar rates, although the two-site molecule underwent further cleavage more readily than the one-site DNA. The catenane from the plasmid with one EcoR124I site, carrying the site on the smaller of the two rings, was cleaved by EcoR124I exclusively in the small ring, and this underwent multiple cleavage akin to the two-site plasmid. Linear substrates derived from the plasmids were cleaved by EcoR124I at very slow rates. The communication between recognition and cleavage sites therefore cannot stem from random looping. Instead, it must follow the DNA contour between the sites. On a circular DNA, the translocation of non-specific DNA past the specifically bound protein should increase negative supercoiling in one domain and decrease it in the other. The ensuing topological barrier may be the trigger for DNA cleavage.  相似文献   

20.
EcoP15I DNA methyltransferase, a member of the type III restriction-modification system, binds to the sequence 5'-CAGCAG-3' transferring a methyl group from S-adenosyl-l-methionine to the second adenine base. We have investigated protein-DNA interactions in the methylase-DNA complex by three methods. Determination of equilibrium dissociation constants indicated that the enzyme had higher affinity for DNA containing mismatches at the target base within the recognition sequence. Potassium permanganate footprinting studies revealed that there was a hyper-reactive permanganate cleavage site coincident with adenine that is the target base for methylation. More importantly, to detect DNA conformational alterations within the enzyme-DNA complexes, we have used a fluorescence-based assay. When EcoP15I DNA methyltransferase bound to DNA containing 2-aminopurine substitutions within the cognate sequence, an eight to tenfold fluorescent enhancement resulting from enzymatic flipping of the target adenine base was observed. Furthermore, fluorescence spectroscopy analysis showed that the changes attributable to structural distortion were specific for only the bases within the recognition sequence. More importantly, we observed that both the adenine bases in the recognition site appear to be structurally distorted to the same extent. While the target adenine base is probably flipped out of the DNA duplex, our results also suggest that fluorescent enhancements could be derived from protein-DNA interactions other than base flipping. Taken together, our results support the proposed base flipping mechanism for adenine methyltransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号