首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Experimental mycology》1993,17(1):70-78
Terhune, B. T., Bojko, R. J., and Hoch, H. C. 1993. Deformation of stomatal guard cell lips and microfabricated artificial topographies during appressorium formation by Uromyces. Experimental Mycology 17, 70-78. The inductive signal, stomatal guard cell lips or 0.5-μm-high plastic ridges, for appressorium formation in urediospore germlings of Uromyces appendiculatus was examined for signs of physical deformation during the course of appressorium development. The normally erect stomatal guard cell lips were usually observed prostrate at most stages of appressorium development; and, there were no persistent or significant indentations into the fungal cell that might have been caused by the topographical features. To further evaluate the events that occurred at the lip-appressorium interface in situ, polycarbonate and/or polystyrene ridges (0.5 μm high and 0.25 μm wide), mimicking stomatal guard cell lips of Phaseolus vulgaris, were cast on specifically microfabricated silicon templates. These artificial lips induced appressoria and became deformed approximately 30 min after initial contact by the germ tube apex as recorded and observed with time-lapsed video light microscopy. The collapsed nature of the ridges was further evaluated by both transmission and scanning electron microscopy. These results suggest that mechanical forces imposed by a combination of cell turgor pressure and adhesion of the appressorium to the substrate were responsible for deformation of the inductive topography.  相似文献   

3.
To infect plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we report that appressorium development in the rice blast fungus Magnaporthe oryzae involves an unusual cell division, in which nuclear division is spatially uncoupled from the site of cytokinesis and septum formation. The position of the appressorium septum is defined prior to mitosis by formation of a heteromeric septin ring complex, which was visualized by spatial localization of Septin4:green fluorescent protein (GFP) and Septin5:GFP fusion proteins. Mitosis in the fungal germ tube is followed by long-distance nuclear migration and rapid formation of an actomyosin contractile ring in the neck of the developing appressorium, at a position previously marked by the septin complex. By contrast, mutants impaired in appressorium development, such as Δpmk1 and ΔcpkA regulatory mutants, undergo coupled mitosis and cytokinesis within the germ tube. Perturbation of the spatial control of septation, by conditional mutation of the SEPTATION-ASSOCIATED1 gene of M. oryzae, prevented the fungus from causing rice blast disease. Overexpression of SEP1 did not affect septation during appressorium formation, but instead led to decoupling of nuclear division and cytokinesis in nongerminated conidial cells. When considered together, these results indicate that SEP1 is essential for determining the position and frequency of cell division sites in M. oryzae and demonstrate that differentiation of appressoria requires a cytokinetic event that is distinct from cell divisions within hyphae.  相似文献   

4.
5.
Pls1 tetraspanins were shown for some pathogenic fungi to be essential for appressorium-mediated penetration into their host plants. We show here that Podospora anserina, a saprobic fungus lacking appressorium, contains PaPls1, a gene orthologous to known PLS1 genes. Inactivation of PaPls1 demonstrates that this gene is specifically required for the germination of ascospores in P. anserina. These ascospores are heavily melanized cells that germinate under inducing conditions through a specific pore. On the contrary, MgPLS1, which fully complements a ΔPaPls1 ascospore germination defect, has no role in the germination of Magnaporthe grisea nonmelanized ascospores but is required for the formation of the penetration peg at the pore of its melanized appressorium. P. anserina mutants with mutation of PaNox2, which encodes the NADPH oxidase of the NOX2 family, display the same ascospore-specific germination defect as the ΔPaPls1 mutant. Both mutant phenotypes are suppressed by the inhibition of melanin biosynthesis, suggesting that they are involved in the same cellular process required for the germination of P. anserina melanized ascospores. The analysis of the distribution of PLS1 and NOX2 genes in fungal genomes shows that they are either both present or both absent. These results indicate that the germination of P. anserina ascospores and the formation of the M. grisea appressorium penetration peg use the same molecular machinery that includes Pls1 and Nox2. This machinery is specifically required for the emergence of polarized hyphae from reinforced structures such as appressoria and ascospores. Its recurrent recruitment during fungal evolution may account for some of the morphogenetic convergence observed in fungi.  相似文献   

6.
7.
《Experimental mycology》1986,10(4):301-306
Cerulenin [(2S) (3R)2,3-epoxy-4-oxo-7,10-dodecadienoylamide], a polyketide synthesis inhibitor, inhibited appressorial pigmentation ofColletotrichum lagenarium at concentrations higher than 10 μg/ml. The inhibitory concentrations of cerulenin inhibited neither spore germination nor appressorium formation but did inhibit penetration of nitrocellulose membranes by penetrating hyphae from appressoria. The colorless appressoria germinated laterally on nitrocellulose membranes and rarely penetrated them. In the presence of cerulenin, treatment with scytalone, a melanin precursor for this fungus, restored appressorial pigmentation and also penetration by appressoria of nitrocellulose membranes. In Czapek liquid medium, mutant 8015 which is defective in the enzyme involved in the conversion of scytalone to 1,3,8-trihydroxynaphthalene in the melanin biosynthetic pathway produced scytalone after 9 days of incubation when hyphal growth reached the maximum level. Application of 10 μg/ml of cerulenin at 9 days of incubation inhibited further production of scytalone by mutant 8015. From these results, it is concluded that appressorial melanin ofC. lagenarium was synthesizedvia the polyketide pathway.  相似文献   

8.
The production of asexual spores plays a critical role in rice blast disease. However, the mechanisms of the genes involved in the conidiogenesis pathway are not well understood. F-box proteins are specific adaptors to E3 ubiquitin ligases that determine the fate of different substrates in ubiquitin-mediated protein degradation and play diverse roles in fungal growth regulation. Here, we identify a Saccharomyces cerevisiae Grr1 homolog, MoGrr1, in Magnaporthe oryzae. Targeted disruption of Mogrr1 resulted in defects in vegetative growth, melanin pigmentation, conidial production, and resistance to oxidative stress, and these mutants consequently exhibited attenuated virulence to host plants. Microscopy studies revealed that the inability to form conidiophores is responsible for the defect in conidiation. Although the Mogrr1 mutants could develop melanized appressoria from hyphal tips, the appressoria were unable to penetrate into plant tissues due to insufficient turgor pressure within the appressorium, thereby attenuating the virulence of the mutants. Quantitative RT-PCR results revealed significantly decreased expression of chitin synthase-encoding genes, which are involved in fungal cell wall integrity, in the Mogrr1 mutants. The Mogrr1 mutants also displayed reduced expression of central components of the MAP kinase and cAMP signaling pathways, which are required for appressorium differentiation. Furthermore, domain complementation analysis indicated that two putative protein-interacting domains in MoGrr1 play essential roles during fungal development and pathogenicity. Taken together, our results suggest that MoGrr1 plays essential roles in fungal development and is required for the full virulence of M. oryzae.  相似文献   

9.
Trimeric G-proteins transmit extracellular signals to various downstream effectors (e.g. MAP kinases) in eukaryotes. In the rice blast fungus Magnaporthe grisea, the Pmk1 MAP kinase is essential for appressorium formation and infectious growth. The pmk1 deletion mutant fails to form appressoria but still responds to exogenous cAMP for tip deformation. Since gene disruption mutants of three Galpha subunits still form appressoria and are phenotypically different from pmk1 mutants, it is likely that the Pmk1 pathway is activated by Gbeta in M. grisea. In this study, we isolated and characterized the MGB1 gene that encodes the G subunit in M. grisea. Mutants disrupted in MGB1 were reduced in conidiation. Conidia from mgb1 mutants were defective in appressorium formation and failed to penetrate or grow invasively on rice leaves. Exogenous cAMP induced appressorium formation in mgb1 mutants, but these appressoria were abnormal in shape and could not penetrate. The intracellular cAMP level was reduced in mgb1 mutants and the defects in conidiation and hyphal growth were partially suppressed with 1 mM cAMP. Transformants expressing multiple copies of MGB1 were able to form appressoria on hydrophilic surfaces. Our results suggest that MGB1 may be involved in the cAMP signalling for regulating conidiation, surface recognition and appressorium formation. The Pmk1 pathway may be the downstream target of MGB1 for regulating penetration and infectious hyphae growth in M. grisea.  相似文献   

10.
The fungal bean pathogen Colletotrichum lindemuthianum differentiates appressoria in order to penetrate bean tissues. We showed that appressorium development in C. lindemuthianum can be divided into three stages, and we obtained three nonpathogenic strains, including one strain blocked at each developmental stage. H18 was blocked at the appressorium differentiation stage; i.e., no genuine appressoria were formed. H191 was blocked at the appressorium maturation stage; i.e., appressoria exhibited a pigmentation defect and developed only partial internal turgor pressure. H290 was impaired in appressorium function; i.e., appressoria failed to penetrate into bean tissues. Furthermore, these strains could be further discriminated according to the bean defense responses that they induced. Surprisingly, appressorium maturation, but not appressorium function, was sufficient to induce most plant defense responses tested (superoxide ion production and strong induction of pathogenesis-related proteins). However, appressorium function (i.e., entry into the first host cell) was necessary for avirulence-mediated recognition of the fungus.  相似文献   

11.
Surface-penetrating phytopathogenic fungi frequently form appressoria. These are specialised infection structures pivotal to fungal ingress into the host. Recently, we demonstrated that one member of a family of cutinases in Magnaporthe grisea is involved in surface sensing, mediating appressorium differentiation and penetration peg formation and hence facilitates host penetration. Cutinase2 serves as an upstream activator of cAMP/PKA and DAG/PKC signalling cascades and is essential for full virulence. Here, we speculate on the role of rice blast hydrophobins as surface interactors facilitating fungal cutinase activity.Key words: rice blast fungus, appressorium, cutinase, hydrophobin, penetration, surface sensing, signalling  相似文献   

12.
Various surface signals are recognized by Magnaporthe oryzae to activate the Pmk1 MAP kinase that is essential for appressorium formation and invasive growth. One of upstream sensors of the Pmk1 pathway is the MoMsb2 signalling mucin. However, the activation of MoMsb2 and its relationship with other sensors is not clear. In this study, we showed that the cleavage and transmembrane domains are essential for MoMsb2 functions. Cleavage of MoMsb2 was further confirmed by western blot analysis, and five putative cleavage sites were functionally characterized. Expression of the extracellular region alone partially rescued the defects of Momsb2 in appressorium formation and virulence. The cytoplasmic region of MoMsb2, although dispensable for appressorium formation, was more important for penetration and invasive growth. Interestingly, the Momsb2 cbp1 double mutant deleted of both mucin genes was blocked in Pmk1 activation. It failed to form appressoria on artificial surfaces and was non‐pathogenic. In addition, we showed that MoMsb2 interacts with Ras2 but not with MoCdc42 in co‐immunoprecipitation assays. Overall, results from this study indicated that the extracellular and cytoplasmic regions of MoMsb2 have distinct functions in appressorium formation, penetration and invasive growth, and MoMsb2 has overlapping functions with Cbp1 in recognizing environmental signals for Pmk1 activation.  相似文献   

13.
To gain entry to plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we demonstrate that appressorium morphogenesis in the rice blast fungus Magnaporthe oryzae is tightly regulated by the cell cycle. Shortly after a fungus spore lands on the rice (Oryza sativa) leaf surface, a single round of mitosis always occurs in the germ tube. We found that initiation of infection structure development is regulated by a DNA replication-dependent checkpoint. Genetic intervention in DNA synthesis, by conditional mutation of the Never-in-Mitosis 1 gene, prevented germ tubes from developing nascent infection structures. Cellular differentiation of appressoria, however, required entry into mitosis because nimA temperature-sensitive mutants, blocked at mitotic entry, were unable to develop functional appressoria. Arresting the cell cycle after mitotic entry, by conditional inactivation of the Blocked-in-Mitosis 1 gene or expression of stabilized cyclinB-encoding alleles, did not impair appressorium differentiation, but instead prevented these cells from invading plant tissue. When considered together, these data suggest that appressorium-mediated plant infection is coordinated by three distinct cell cycle checkpoints that are necessary for establishment of plant disease.  相似文献   

14.
15.
When faced with nonadapted fungal pathogens, Arabidopsis thaliana mounts nonhost resistance responses, which typically result in the termination of early pathogenesis steps. We report that nonadapted anthracnose fungi engage two alternative entry modes during pathogenesis on leaves: turgor-mediated invasion beneath melanized appressoria, and a previously undiscovered hyphal tip–based entry (HTE) that is independent of appressorium formation. The frequency of HTE is positively regulated by carbohydrate nutrients and appears to be subject to constitutive inhibition by the fungal mitogen-activated protein kinase (MAPK) cascade of MAPK ESSENTIAL FOR APPRESSORIUM FORMATION1. The same MAPK cascade is essential for appressorium formation. Unexpectedly, the Arabidopsis indole glucosinolate pathway restricts entry of the nonadapted anthracnose fungi only when these pathogens employ HTE. Arabidopsis mutants defective in indole glucosinolate biosynthesis or metabolism support the initiation of postinvasion growth of nonadapted Colletotrichum gloeosporioides and Colletotrichum orbiculare. However, genetic disruption of Colletotrichum appressorium formation does not permit HTE on host plants. Thus, Colletotrichum appressoria play a critical role in the suppression of preinvasion plant defenses, in addition to their previously described role in turgor-mediated plant cell invasion. We also show that HTE is the predominant morphogenetic response of Colletotrichum at wound sites. This implies the existence of a fungal sensing system to trigger appropriate morphogenetic responses during pathogenesis at wound sites and on intact leaf tissue.  相似文献   

16.
In the present study, using a high-fidelity digital microscope, we observed the sequence of appressorial development on the germ tubes of a powdery mildew fungus isolated from red clover leaves. Based on its morphological characteristics and rDNA internal transcribed spacer (ITS) sequences, the fungus was identified as Erysiphe trifoliorum, and one of its isolates, designated as KRCP-4N, was used in this work. The conidial germination of isolate KRCP-4N was studied on host (red clover) and non-host (barley) leaves, as well as on an artificial hydrophobic membrane (Parafilm). More than 90% of conidia germinated synchronously and developed dichotomous appressoria (symmetrical double-headed appressoria) on all substrata used. On host leaves, all appressorium-forming conidia developed hyphae (colony-forming hyphae) from conidial bodies without extending germ tubes from the tips of the appressoria. On non-host leaves and on Parafilm-covered glass slides, however, all conidia extended germ tubes from one side of dichotomous appressoria (two-step germination). In addition to the dichotomous appressoria, we detected a few conidia that produced hooked appressoria and extended germ tubes from the tip of the appressorium. Penetration attempts by KRCP-4N conidia on barley leaves were impeded by papillae formed at penetration sites beneath these two types of appressorium. From these results, we conclude that the “two-step germination” of E. trifoliorum KRCP-4N conidia is the result of an unsuccessful penetration attempt, causing diversity in appressorial shape.  相似文献   

17.
18.
Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases.  相似文献   

19.
As a typical foliar pathogen, appressorium formation and penetration are critical steps in the infection cycle of Magnaporthe oryzae. Because appressorium formation and penetration are closely co‐regulated with the cell cycle, and Cdc14 phosphatases have an antagonistic relationship with cyclin‐dependent kinases (CDKs) on proteins related to mitotic exit and cytokinesis, in this study, we functionally characterized the MoCDC14 gene in M. oryzae. The Mocdc14 deletion mutant showed significantly reduced growth rate and conidiation. It was also defective in septum formation and nuclear distribution. Septation was irregular in Mocdc14 hyphae and hyphal compartments became multi‐nucleate. Mutant conidia often showed incomplete septa or lacked any septum. During appressorium formation, the septum delimiting appressoria from the rest of the germ tubes was often formed far away from the neck of the appressoria or not formed at all. Unlike the wild‐type, some mutant appressoria had more than one nucleus at 24 h. In addition to appressoria, melanization occurred on parts of the germ tubes and conidia, depending on the irregular position of the appressorium‐delimiting septum. The Mocdc14 mutant was also defective in glycogen degradation during appressorium formation and appressorial penetration of intact plant cells. Similar defects in septum formation, melanization and penetration were observed with appressorium‐like structures formed at hyphal tips in the Mocdc14 mutant. Often a long fragment of mutant hyphae was melanized, together with the apical appressorium‐like structures. These results indicate that MoCDC14 plays a critical role in septation, nuclear distribution and pathogenesis in M. oryzae, and correct septum formation during conidiogenesis and appressorium formation requires the MoCdc14 phosphatase.  相似文献   

20.
Magnaporthe grisea, the causal agent of rice blast disease, invades plant tissue due to the action of specialized infection structures called appressoria, which are used to breach the leaf cuticle and allow development of intracellular, infectious hyphae. In this report we demonstrate that peroxisomal carnitine acetyl transferase (CAT) activity is necessary for appressorium function, and in particular, for the elaboration of primary penetration hyphae. The major CAT activity in M. grisea is encoded by the PTH2 gene, which shows elevated expression in response to acetate and lipid, and is regulated by the cyclic AMP response pathway. Furthermore, a Pth2-GFP fusion protein colocalizes with a peroxisomal marker protein. Targeted deletion of PTH2, generated mutants that were completely non-pathogenic, lacked CAT activity and were unable to utilize a range of lipid substrates. The impairment of appressorium function in Deltapth2 was associated with a delay in lipid reserve mobilization from germ tubes into developing infection cells, and abnormal chitin distribution in infection structures. Addition of glucose to Deltapth2 mutants partially restored the ability to cause rice blast disease and lipid reserve mobilization. Taken together, our findings provide evidence that Pth2 plays a role in the generation of acetyl CoA pools necessary for appressorium function and rapid elaboration of penetration hyphae during host infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号