首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canine signal peptidase consists of a complex of five proteins (Evans, A. E., Gilmore, R., and Blobel, G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 581-585). A cDNA encoding the 21-kDa subunit of the signal peptidase complex was isolated from a liver cDNA library using an 88-base pair probe, generated by the polymerase chain reaction. The 820-base pair cDNA was sequenced and found to encode a protein of 21,585 daltons. The deduced amino acid sequence from the canine cDNA was found to be 47% identical to the yeast SEC11 protein. SEC11 has been shown to be required for signal peptide cleavage, normal rate of secretion, and cell survival in Saccharomyces cerevisiae (B?hni, P. C., Deshaies, R. J., and Schekman, R. W. (1988) J. Cell Biol. 106, 1035-1042). It is, therefore, likely that the 21-kDa subunit of signal peptidase complex is the structural and functional homologue of the yeast SEC11 gene product.  相似文献   

2.
The human cytomegalovirus glycoprotein US2 induces dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol and targets them for proteasomal degradation. Signal peptide peptidase (SPP) has been shown to be integral for US2-induced dislocation of MHC class I heavy chains although its mechanism of action remains poorly understood. Here, we show that knockdown of protein disulphide isomerase (PDI) by RNA-mediated interference inhibited the degradation of MHC class I molecules catalysed by US2 but not by its functional homolog US11. Overexpression of the substrate-binding mutant of PDI, but not the catalytically inactive mutant, dominant-negatively inhibited US2-mediated dislocation of MHC class I molecules by preventing their release from US2. Furthermore, PDI associated with SPP independently of US2 and knockdown of PDI inhibited SPP-mediated degradation of CD3δ but not Derlin-1-dependent degradation of CFTR DeltaF508. Together, our data suggest that PDI is a component of the SPP-mediated ER-associated degradation machinery.  相似文献   

3.
The four nucleolar proteins NOP1, SSB1, GAR1, and NSR1 of Saccharomyces cerevisiae share a repetitive domain composed of repeat units rich in glycine and arginine (GAR domain). We have cloned and sequenced a fifth member of this family, NOP3, and shown it to be essential for cell viability. The NOP3 open reading frame encodes a 415 amino acid protein with a predicted molecular mass of 45 kD, containing a GAR domain and an RNA recognition motif. NOP3-specific antibodies recognize a 60-kD protein by SDS-PAGE and decorate the nucleolus and the surrounding nucleoplasm. A conditional lethal mutation, GAL::nop3, was constructed; growth of the mutant strain in glucose medium represses NOP3 expression. In cells depleted of NOP3, production of cytoplasmic ribosomes is impaired. Northern analysis and pulse-chase labeling indicate that pre-rRNA processing is inhibited at the late steps, in which 27SB pre-rRNA is cleaved to 25S rRNA and 20S pre-rRNA to 18S rRNA.  相似文献   

4.
Canine microsomal signal peptidase activity was previously isolated as a complex of five subunits (25, 22/23, 21, 18, and 12 kDa). Two of the signal peptidase complex (SPC) subunits (23/23 and 21 kDa) have been cloned and sequenced. One of these, the 21-kDa subunit, was observed to be a mammalian homolog of SEC11 protein (Sec11p) (Greenburg, G., Shelness, G. S., and Blobel, G. (1989) J. Biol. Chem. 264, 15762-15765) a gene product essential for signal peptide processing and cell growth in yeast (B?hni, P.C., Deshqies, R.J., and Schekman, R.W. (1988) J. Cell Biol. 106, 1035-1042). cDNA clones for the 18-kDa SPC subunit have now been characterized and found to encode a second SEC11p homolog. Both the 18- and 21-kDa canine SPC subunits are integral membrane proteins by virtue of their resistance to alkaline extraction. Upon detergent solubilization, both proteins are found in a complex with the 22/23 kDa SPC subunit, the only SPC subunit containing N-linked oligosaccharide. No steady-state pool of canine Sec11p-like monomers is detected in microsomal membranes. Alkaline extraction of microsomes prior to solubilization or solubilization at alkaline pH causes partial dissociation of the SPC. The Sec11p-like subunits displaced from the complex under these conditions demonstrate no signal peptide processing activity by themselves. The existence of homologous subunits is common to a number of known protein complexes and provides further evidence that the association between SPC proteins observed in vitro may be physiologically relevant to the mechanism of signal peptide processing and perhaps protein translocation.  相似文献   

5.
Phosphatidylcholine and phosphatidylethanolamine are the most abundant phospholipids in eukaryotic cells and thus have major roles in the formation and maintenance of vesicular membranes. In yeast, diacylglycerol accepts a phosphocholine moiety through a CPT1-derived cholinephosphotransferase activity to directly synthesize phosphatidylcholine. EPT1-derived activity can transfer either phosphocholine or phosphoethanolamine to diacylglcyerol in vitro, but is currently believed to primarily synthesize phosphatidylethanolamine in vivo. In this study we report that CPT1- and EPT1-derived cholinephosphotransferase activities can significantly overlap in vivo such that EPT1 can contribute to 60% of net phosphatidylcholine synthesis via the Kennedy pathway. Alterations in the level of diacylglycerol consumption through alterations in phosphatidylcholine synthesis directly correlated with the level of SEC14-dependent invertase secretion and affected cell viability. Administration of synthetic di8:0 diacylglycerol resulted in a partial rescue of cells from SEC14-mediated cell death. The addition of di8:0 diacylglycerol increased di8:0 diacylglycerol levels 20-40-fold over endogenous long-chain diacylglycerol levels. Di8:0 diacylglcyerol did not alter endogenous phospholipid metabolic pathways, nor was it converted to di8:0 phosphatidic acid.  相似文献   

6.
Retrieval of HDEL proteins is required for growth of yeast cells   总被引:3,自引:0,他引:3       下载免费PDF全文
The ERD2 gene of Saccharomyces cerevisiae encodes the receptor which retrieves HDEL-containing containing ER proteins from the Golgi apparatus. Viable erd2 mutants have been isolated that show no obvious HDEL-dependent retention of the luminal ER protein BiP, suggesting that retrieval of HDEL proteins is not essential for growth. However, cells that lack Erd2p completely have a defective Golgi apparatus and cannot grow. This observation led to the suggestion that the receptor had a second function, possibly related to its ability to recycle from Golgi to ER. In this paper we investigate the requirements for Erd2p to support growth. We show that mutations that block its recycling also prevent growth. In addition, we show that all mutant receptors that can support growth have a residual ability to retrieve BiP, which is detectable when they are overexpressed. Mere recycling of an inactive form of the receptor, mediated by a cytoplasmic KKXX sequence, is not sufficient for growth. Furthermore, saturation of the receptor by expression of an HDEL-tagged version of pro-alpha factor inhibits growth, even of strains that do not show obvious BiP retention. We conclude that growth requires the HDEL-dependent retrieval of one or more proteins, and that these proteins can be recognized even under conditions where BiP is secreted. Genetic screens have failed to identify any one protein whose loss could account for the Erd2p requirement. Therefore, a growth may require the retention of multiple HDEL proteins in the ER, or alternatively the removal of such proteins from the Golgi apparatus.  相似文献   

7.
Mre11, a conserved protein found in organisms ranging from yeast to multicellular organisms, is required for normal meiotic recombination. Mre11 interacts with Rad50 and Nbs1/Xrs2 to form a complex (MRN/X) that participates in double-strand break (DSB) ends processing. In this study, we silenced the MRE11 gene in rice and detailed its function using molecular and cytological methods. The OsMRE11-deficient plants exhibited normal vegetative growth but could not set seed. Cytological analysis indicated that in the OsMRE11-deficient plants, homologous pairing was totally inhibited, and the chromosomes were completely entangled as a formation of multivalents at metaphase I, leading to the consequence of serious chromosome fragmentation during anaphase I. Immunofluorescence studies further demonstrated that OsMRE11 is required for homologous synapsis and DSB processing but is dispensable for meiotic DSB formation. We found that OsMRE11 protein was located on meiotic chromosomes from interphase to late pachytene. This protein showed normal localization in zep1, Oscom1 and Osmer3, as well as in OsSPO11-1 RNAi plants, but not in pair2 and pair3 mutants. Taken together, our results provide evidence that OsMRE11 performs a function essential for maintaining the normal HR process and inhibiting non-homologous recombination during meiosis.  相似文献   

8.
A split zinc-finger protein is required for normal yeast growth.   总被引:3,自引:0,他引:3  
H Blumberg  P Silver 《Gene》1991,107(1):101-110
We have identified a gene that, when present in multiple copies, partially inhibits nuclear protein localization in Saccharomyces cerevisiae. This gene encodes a protein that is a unique member of the Cys2His2 zinc-finger family of DNA-binding proteins. It is designated SFP1 for split finger protein because its two zinc-finger domains are separated from one another by 40 amino acids (aa) as opposed to the usual spacing of 7 or 8 aa for Cys2His2 proteins. Disruption of the SFP1 gene results in slow cell growth, with cells having multiple, nucleated buds.  相似文献   

9.
Fission yeast Cdc37 is required for multiple cell cycle functions   总被引:1,自引:0,他引:1  
The identification of a Schizosaccharomyces pombe homologue of the cdc37 gene is described. The gene product is most similar to the budding yeast homologue, but shows similarity to metazoan Cdc37 proteins, with a region of high similarity at the extreme N-terminus. Gene transplacement experiments in diploid cells followed by tetrad dissection show that the gene is essential. Depletion of the gene product after switching off expression of cdc37 from the regulatable nmt81 promoter results in cessation of growth and division. The cells arrest heterogeneously, with a significant proportion showing mitotic defects; paradoxically, a proportion of the cells show a short-cell phenotype consistent with an advanced cell cycle.Communicated by D. Y. Thomas  相似文献   

10.
Although the Myc oncogene has long been known to play a role in many human cancers, the mechanisms that mediate its effects in both normal cells and cancer cells are not fully understood. We have initiated a genetic analysis of the Drosophila homolog of the Myc oncoprotein (dMyc), which is encoded by the dm locus. We carried out mosaic analysis to elucidate the functions of dMyc in the germline and somatic cells of the ovary during oogenesis, a process that involves cell proliferation, differentiation and growth. Germline and somatic follicle cells mutant for dm exhibit a profound decrease in their ability to grow and to carry out endoreplication, a modified cell cycle in which DNA replication occurs in the absence of cell division. In contrast to its dramatic effects on growth and endoreplication, dMyc is dispensable for the mitotic division cycles of both germline and somatic components of the ovary. Surprisingly, despite their impaired ability to endoreplicate, dm mutant follicle cells appeared to carry out chorion gene amplification normally. Furthermore, in germline cysts in which the dm mutant cells comprised only a subset of the 16-cell cluster, we observed strictly cell-autonomous growth defects. However, in cases in which the entire germline cyst or the whole follicular epithelium was mutant for dm, the growth of the entire follicle, including the wild-type cells, was delayed. This observation indicates the existence of a signaling mechanism that acts to coordinate the growth rates of the germline and somatic components of the follicle. In summary, dMyc plays an essential role in promoting the rapid growth that must occur in both the germline and the surrounding follicle cells for oogenesis to proceed.  相似文献   

11.
The transporter associated with antigen processing (TAP) binds peptides in its cytosolic part and subsequently translocates the peptides into the lumen of the endoplasmic reticulum (ER), where assembly of major histocompatibility complex (MHC) class I and peptide takes place. Tapasin is a subunit of the TAP complex and binds both to TAP1 and MHC class I. In the absence of tapasin, the assembly of MHC class I in the ER is impaired, and the surface expression is reduced. To clarify the function of tapasin in the processing of antigenic peptides, we studied the interaction of peptide and TAP, peptide transport across the membrane of the ER, and association of peptides with MHC class I molecules in the microsomes derived from tapasin mutant cell line 721.220, its sister cell line 721.221 expressing tapasin, and their HLA-A2 transfectants. The binding of peptides to TAP in tapasin mutant 721.220 cells was significantly diminished in comparison with 721.221 cells. Impaired peptide-TAP interaction resulted in a defective peptide transport in tapasin mutant 721.220 cells. Interestingly, despite the diminished peptide binding to TAP, the transport rate of TAP-associated peptides was not significantly altered in 721.220 cells. After transfection of tapasin cDNA into 721.220 cells, efficient peptide-TAP interaction was restored. Thus, we conclude that tapasin is required for efficient peptide-TAP interaction.  相似文献   

12.
The regulated turnover of endoplasmic reticulum (ER)–resident membrane proteins requires their extraction from the membrane lipid bilayer and subsequent proteasome-mediated degradation. Cleavage within the transmembrane domain provides an attractive mechanism to facilitate protein dislocation but has never been shown for endogenous substrates. To determine whether intramembrane proteolysis, specifically cleavage by the intramembrane-cleaving aspartyl protease signal peptide peptidase (SPP), is involved in this pathway, we generated an SPP-specific somatic cell knockout. In a stable isotope labeling by amino acids in cell culture–based proteomics screen, we identified HO-1 (heme oxygenase-1), the rate-limiting enzyme in the degradation of heme to biliverdin, as a novel SPP substrate. Intramembrane cleavage by catalytically active SPP provided the primary proteolytic step required for the extraction and subsequent proteasome-dependent degradation of HO-1, an ER-resident tail-anchored protein. SPP-mediated proteolysis was not limited to HO-1 but was required for the dislocation and degradation of additional tail-anchored ER-resident proteins. Our study identifies tail-anchored proteins as novel SPP substrates and a specific requirement for SPP-mediated intramembrane cleavage in protein turnover.  相似文献   

13.
D Tollervey 《The EMBO journal》1987,6(13):4169-4175
In Saccharomyces cerevisiae, seven snRNAs (snR3, 4, 5, 8, 9, 10 and 17) are retained in the nucleus under conditions in which nucleoplasmic RNAs are lost, and may be nucleolar. All of these snRNAs show properties consistent with hydrogen bonding to pre-ribosomal RNAs; snR5 and 8 with 20S pre-rRNA, snR3, 4, 10 and 17 with 35S pre-rRNA and snR9 with 20-35S RNA. Strains lacking snR10 are impaired in growth and specifically defective in the processing of 35S RNA. Processing is slowed, leading to 35S RNA accumulation and most cleavage occurs, not at the normal sites, but at sites which in wild-type strains are used for subsequent steps in rRNA maturation.  相似文献   

14.
Saccharomyces cerevisiae Nfs1p is mainly found in the mitochondrial matrix and has been shown to participate in iron-sulfur cluster assembly. We show here that Nfs1p contains a potential nuclear localization signal, RRRPR, in its mature part. When this sequence was mutated to RRGSR, the mutant protein could not restore cell growth under chromosomal NFS1-depleted conditions. However, this mutation did not affect the function of Nfs1p in biogenesis of mitochondrial iron-sulfur proteins. The growth defect of the mutant was complemented by simultaneous expression of the mature Nfs1p, which contains the intact nuclear localization signal but lacks its mitochondrial-targeting presequence. These results suggest that a fraction of Nfs1p is localized in the nucleus and is essential for cell viability.  相似文献   

15.
Yeast secretory mutant sec53 cells accumulate inactive secretory glycoprotein precursors that remain associated with the endoplasmic reticulum (ER) at the restrictive temperature (37 degrees C). The possibility that precursor polypeptides fail to penetrate completely into the ER lumen was tested by examining the protease accessibility of accumulated invertase, mating pheromone precursor prepro-alpha-factor and the vacuolar protein precursor procarboxypeptidase Y in cell lysates. In all three cases, the secretory protein precursors are protected from the action of exogenous protease unless the membrane is permeabilized by including Triton X-100 or saponin in the incubation. These results suggest that the sec53 defect allows complete polypeptide translocation. Consistent with this interpretation, the precursor of invertase accumulates in a signal peptide-processed form. In addition, invertase and prepro-alpha-factor precursors contain a small amount of possibly aberrant carbohydrate. In mutant cells or in wild type cells treated with tunicamycin, a 10-kDa fragment of the N terminus of mature invertase assumes a conformation that is resistant to trypsin with or without detergent. This domain may be associated with an ER protein or may simply assume an unusual conformation as a consequence of deficient glycosyl modification.  相似文献   

16.
Glutathione (GSH) is the most abundant non-protein thiol in eukaryotic cells and acts as reducing equivalent in many cellular processes. We investigated the role of glutathione in Dictyostelium development by disruption of gamma-glutamylcysteine synthetase (GCS), an essential enzyme in glutathione biosynthesis. GCS-null strain showed glutathione auxotrophy and could not grow in medium containing other thiol compounds. The developmental progress of GCS-null strain was determined by GSH concentration contained in preincubated media before development. GCS-null strain preincubated with 0.2 mM GSH was arrested at mound stage or formed bent stalk-like structure during development. GCS-null strain preincubated with more than 0.5 mM GSH formed fruiting body with spores, but spore viability was significantly reduced. In GCS-null strain precultured with 0.2 mM GSH, prestalk-specific gene expression was delayed, while prespore-specific gene and spore-specific gene expressions were not detected. In addition, GCS-null strain precultured with 0.2 mM GSH showed prestalk tendency and extended G1 phase of cell cycle. Since G1 phase cells at starvation differentiate into prestalk cells, developmental defect of GCS-null strain precultured with 0.2 mM GSH may result from altered cell cycle. These results suggest that glutathione itself is essential for growth and differentiation to prespore in Dictyostelium.  相似文献   

17.
Complexes of D-type cyclins and cdk4 or 6 are thought to govern progression through the G(1) phase of the cell cycle. In DROSOPHILA:, single genes for Cyclin D and Cdk4 have been identified, simplifying genetic analysis. Here, we show that DROSOPHILA: Cdk4 interacts with Cyclin D and the Rb homolog RBF as expected, but is not absolutely essential. Flies homozygous for null mutations develop to the adult stage and are fertile, although only to a very limited degree. Overexpression of inactive mutant Cdk4, which is able to bind Cyclin D, does not enhance the Cdk4 mutant phenotype, confirming the absence of additional Cyclin D-dependent cdks. Our results indicate, therefore, that progression into and through the cell cycle can occur in the absence of Cdk4. However, the growth of cells and of the organism is reduced in Cdk4 mutants, indicating a role of D-type cyclin-dependent protein kinases in the modulation of growth rates.  相似文献   

18.
During Saccharomyces cerevisiae mating, chemotropic growth and cell fusion are critical for zygote formation. Cdc24p, the guanine nucleotide exchange factor for the Cdc42 G protein, is necessary for oriented growth along a pheromone gradient during mating. To understand the functions of this critical Cdc42p activator, we identified additional cdc24 mating mutants. Two mating-specific mutants, the cdc24-m5 and cdc24-m6 mutants, each were isolated with a mutated residue in the conserved catalytic domain. The cdc24-m6 mutant responds normally to pheromone and orients its growth towards a mating partner yet accumulates prezygotes during mating. cdc24-m6 prezygotes have two apposed intact cell walls and do not correctly localize proteins required for cell fusion, despite normal exocytosis. Our results indicate that the exchange factor Cdc24p is necessary for maintaining or restricting specific proteins required for cell fusion to the cell contact region during mating.  相似文献   

19.
Minimal CK2 activity required for yeast growth   总被引:3,自引:0,他引:3  
Protein kinase CK2 is essential for the growth of Saccharomyces cerevisiae. Yeast cells that lack the functional genes coding for both the catalytic subunits of protein kinase CK2 can grow only if they are complemented by exogenous cDNAs coding for this subunit. A series of deletion mutants of CK2α from Xenopus laevis was constructed. These mutants that have carboxyl end deletions yield a CK2α product that varies over four orders of magnitude in its capacity to phosphorylate casein in vitro. Complementation of yeast RPG41-1a, a mutant defective in CKA1 and CKA2 genes, with wild-type X. laevis CK2α and with cDNAs coding for truncated CK2α having amino acids 1–328 and 1–327 resulted in cells that grew in gal-minimal media at 30 C as well as the cells harboring the yeast CKA2 gene. However, the growth was significantly diminished when cells were complemented with X. laevis CK2α containing 1–326 amido acids. This mutant has 0.6% of the catalytic activity of the wild-type enzyme. Yeast cells that expressed CK2α 1–324 and 1–323 which have 10-and 100-fold less activity, respectively, were not able to grow. The growth of cells containing the CK2α 1–326 mutant was very sensitive to temperature, and minimal growth was observed at 37 C. This mutant was also more sensitive to UV radiation but was not significantly affected by 0.4 M NaCl.Both authors contributed equally to this work  相似文献   

20.
To investigate the function of the nucleolar protein Nop2p in Saccharomyces cerevisiae, we constructed a strain in which NOP2 is under the control of a repressible promoter. Repression of NOP2 expression lengthens the doubling time of this strain about fivefold and reduces steady-state levels of 60S ribosomal subunits, 80S ribosomes, and polysomes. Levels of 40S subunits increase as the free pool of 60S subunits is reduced. Nop2p depletion impairs processing of the 35S pre-rRNA and inhibits processing of 27S pre-rRNA, which results in lower steady-state levels of 25S rRNA and 5.8S rRNA. Processing of 20S pre-rRNA to 18S rRNA is not significantly affected. Processing at sites A2, A3, B1L, and B1S and the generation of 5' termini of different pre-rRNA intermediates appear to be normal after Nop2p depletion. Sequence comparisons suggest that Nop2p may function as a methyltransferase. 2'-O-ribose methylation of the conserved site UmGm psi UC2922 is known to take place during processing of 27S pre-rRNA. Although Nop2p depletion lengthens the half-life of 27S pre-RNA, methylation of UmGm psi UC2922 in 27S pre-rRNA is low during Nop2p depletion. However, methylation of UmGm psi UC2922 in mature 25S rRNA appears normal. These findings provide evidence for a close interconnection between methylation at this conserved site and the processing step that yields the 25S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号