首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Retinal projections were experimentally manipulated in a bony fish to reveal conditions under which considerably enlarged ipsilateral projections developed and persisted. Three experimental groups were studied: animals after unilateral enucleation, after unilateral nerve crush, and after enucleation and crush of the remaining optic nerve. At 29 days after unilateral enucleation alone, no enhanced ipsilateral projection had developed. After nerve crush, however, large numbers of retinal fibers regenerated into the ipsilateral tectum. Retrogradely filled, ipsilaterally projecting ganglion cells were distributed throughout the entire retina. After 15 days regenerating retinal fibers covered the entire ipsilateral tectum. At later stages the ipsilateral projection showed progressive reduction in coverage of the tectum. Combining enucleation with nerve crush led to an ipsilateral projection that covered the tectum at 28 days and later. In this experimental situation the development of an ipsilateral projection appears to be a two-step process: (1) Fibers are rerouted to the ipsilateral side at the diencephalon, and (2) ipsilateral fibers persist in the tectum only in the absence of a contralateral projection while they appear to be eliminated in the other cases.  相似文献   

2.
Retinal projections were experimentally manipulated in a bony fish to reveal conditions under which considerably enlarged ipsilateral projections developed and persisted. Three experimental groups were studied: animals after unilateral enucleation, after unilateral nerve crush, and after enucleation and crush of the remaining optic nerve. At 29 days after unilateral enucleation alone, no enhanced ipsilateral projection had developed. After nerve crush, however, large numbers of retinal fibers regenerated into the ipsilateral tectum. Retrogradely filled, ipsilaterally projecting ganglion cells were distributed throughout the entire retina. After 15 days regenerating retinal fibers covered the entire ipsilateral tectum. At later stages the ipsilateral projection showed progressive reduction in coverage of the tectum. Combining enucleation with nerve crush led to an ipsilateral projection that covered the tectum at 28 days and later. In this experimental situation the development of an ipsilateral projection appears to be a two-step process: (1) Fibers are rerouted to the ipsilateral side at the diencephalon, and (2) ipsilateral fibers persist in the tectum only in the absence of a contralateral projection while they appear to be eliminated in the other cases. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5-poor anterior tectum and avoid the ephrinA5-rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA-coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time-delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum.  相似文献   

4.
The activities of glutamic acid decarboxylase (GAD), choline acetylase, dopa decarboxylase, and tyrosine hydroxylase were measured by radioactive assays and of acetylcholinesterase by a colorimetric procedure on homogenates of the tectum, forebrain, and cerebellum of the chick from the third embryonic day to 3 weeks post-hatch. GAD showed a rapid development beginning about day 9 and peaking at or before hatching: there were generally similar levels in all 3 areas during development although in the oldest chicks the tectum had significantly higher GAD levels than the forebrain, the cerebellar levels being intermediate. The other enzymes all showed a somewhat later development with sharp increases beginning on or after day 11 and peak levels being reached only after hatching. The different brain regions also showed much greater disparity in levels of these other enzymes than found for GAD. The tectum contained the greatest concentrations of choline acetylase and acetylcholinesterase, and the forebrain had the most tyrosine hydroxylase and dopa decarboxylase. The data may be useful for correlation with morphological developmental studies.  相似文献   

5.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5‐poor anterior tectum and avoid the ephrinA5‐rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA‐coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time‐delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

6.
Activities of choline acetyltransferase (CAT) and acetylcholinesterase (AChE) were investigated in the goldfish optic tectum after disconnection of the optic afferents. Permanent disconnection was achieved by eye removal, and optic nerve crush produced a temporary disconnection until regeneration. There was a rapid loss in total activity per tectum for both enzymes under the two disconnection conditions. At longer intervals after optic nerve crush the levels of total activity for both enzymes returned toward control levels, as regeneration of the nerve proceeded. Total activity for both enzymes remained depressed after eye removal, however. Variable results were obtained in specific activity data, expressed per unit protein, although ther was a 10% loss in specific activity of CAT at early intervals after eye removal. The data are interpreted as consistent with the possibility that at least a fraction of the axons in the retinotectal pathway of goldfish are cholinergic, and parallel our previous observations showing similar rapid losses of nicotinic-cholinergic receptor activity in this system.  相似文献   

7.
Cubillos S  Lima L 《Amino acids》2006,31(3):325-331
Summary. Goldfish retinal explant outgrowth in the presence of fetal calf serum is stimulated by taurine. In the absence of it, but with glucose in the medium, length of neurites is still elevated by the amino acid. Using the medium in the presence of glucose, but in the absence of fetal calf serum, we explored the effect of optic tectum medium from cultures of them coming from goldfish without crush of the optic nerve or 3, 5, 10, 14 and 20 days after crush. Retinal explants, intact or from goldfish with crush of the optic nerve 10 days prior to starting the culture, were employed in order to measure the possible effect of optic tectum media and the inter action with taurine. In other type of experiments the optic nerve was crushed 1, 2, 4, 7 and 10 days before dissection of the optic tectum, and then co-cultured with intact or 10 days post-crush retinal explants. Optic tectum media produced a time-dependent effect on outgrowth in lesioned retinas with a maximum effect around 5 days after the lesion for the corresponding optic tectum. Taurine, 4 mM, did not further affect the outgrowth in the presence of optic tectum media, but did significantly increase length of neurites either in intact or in post-lesion retinas. Co-culture of optic tectum at different days post-lesion and retinas at 10 days post-lesion increased the outgrowth around 4 days post-lesion, in a preparation resulting in mutual effects of both types of tissues. The addition of taurine in these conditions did not further increase outgrowth, rather inhibited it according to the time after lesion of optic nerve corresponding to the co-cultured optic tectum. The effect of taurine was concentration-dependent, since 0.2 mM was more effective than 2 or 4 mM in the presence of optic tectum with lesion of 2 days. These results demonstrate the time-course of the regeneration processes in the visual system of goldfish, indicating the crucial periods after crush in which the tectum could produce stimulation and later decrease or no effect on outgrowth from the retina. In addition, they are evidences of the interaction between taurine and optic tectum production of time-produced specific agents. The mechanisms underlying these effects are closely related to calcium, as it was demonstrated by the addition of extracellular or intracellular chelators to the medium, which inhibited the effects of the optic tectum and the trophic properties of taurine in this system. The inhibitor of taurine transport, guanidoethylsulfonate, also decreased the stimulatory effects of the optic tectum and of taurine, indicating an interaction of substances produced by the tectum with taurine, and an effect of taurine mediated through its entrance to the cells. Overall, retinal explants outgrowth in the absence of fetal calf serum, the interaction of agents of the optic tectum and taurine modulates outgrowth from the retina, and these effects are mediated by calcium levels and by the levels of intracellular taurine.  相似文献   

8.
After sectioning of the goldfish optic nerve a number of enzyme histochemical changes are observed in the hypertrophied retinal ganglion cells and in the optic nerve. Between one and eighteen days postoperatively an increase in the amount of acid phosphatase reaction product is noted. The enhanced activity decreased to normal first in the optic nerve, followed by the optic tract and tectum. Four days postoperatively higher levels of activity were noted in the hypertrophic retinal ganglion cells for the enzymes NADH tetrazolium reductase, cytochrome oxidase, glutamate dehydrogenase and lactate dehydrogenase. The same enzymes also showed an activity increase in the lesioned optic nerve after four to ten days postoperatively, beginning at the cut and gradually spreading towards the optic tectum. Between fifteen and eighteen days the activity dropped to normal in the hypertrophic retinal ganglion cells, while in the lesioned nerve raised levels of reaction products could be seen till days thirty-five and/or forty-five. It was concluded that the degeneration of the optic pathway is marked by the increase of acid phosphatase activity, whereas the process of regeneration is characterized by an increase of NADH tetrazolium reductase, cytochrome oxidase, glutamate dehydrogenase and lactate dehydrogenase activities. The possible functional implications of these enzymes in the regenerative phenomena are discussed.  相似文献   

9.
Retinotectal projection is precisely organized in a retinotopic manner. In normal projection, temporal retinal axons project to the rostral part of the tectum, and nasal axons to the caudal part of the tectum. The two-dimensional relationship between the retina and the tectum offers a useful experimental system for analysis of neuronal target recognition. We carried out rotation of the tectal primordium in birds at an early stage of development, around the 10-somite stage, to achieve a better understanding of the characteristics of target recognition, especially the rostrocaudal specificity of the tectum. Our results showed that temporal retinal axons projected to the rostral part of the rotated tectum, which was originally caudal, and that nasal axons projected to the caudal part of the rotated tectum, which was originally rostral. Therefore, the tectum that had been rotated at the 10-somite stage received normal topographic projection from the retinal ganglion cells. Rostrocaudal specificity of the tectum for target recognition is not determined by the 10-somite stage and is acquired through interactions between the tectal primordium and its surrounding structures.  相似文献   

10.
In amphibians and teleosts, retina and tectum grow incongruently. In order to maintain the retinotopy of the retinotectal projection, Gaze, Keating, and Chung (1974) postulated a shifting of terminals throughout growth. In order to test the possibility that ingrowing retinal fibers are the driving force for this shifting, we induced a permanent retinal projection into the ipsilateral tectum in juveniles of the cichlid fish Haplochromis burtoni. The surface of the tectum had increased (11-18 months later) 2.5-5.8 times, and the surface of the retina 8.6-14 times. Filling of ganglion cells with horseradish peroxidase (HRP) retrogradely from the tectum showed ipsilaterally regenerating ganglion cells only in the center of the retina. The position of ganglion cells indicated that the ipsilateral projection derived only from axotomized and regenerating retinal ganglion cells but not from those newly born. Ipsilaterally projecting retinal fibers showed terminals only in the rostral half of the tectum. Comparison of area of terminations of ipsilaterally projecting ganglion cells at various times after the crush provided no evidence for expansion or a shift into caudal tectal areas throughout the period of growth. These findings are compatible with the idea that newly ingrowing fibers induce older terminals to move caudally.  相似文献   

11.
The developmental profiles of acetylcholinesterase and choline acetyltransferase in chick optic tectum and retina cell aggregates, over a 30-day period, have been determined and compared with the corresponding developmental curves obtained in vivo. Both acetylcholinesterase and choline acetyltransferase activities in retina cell aggregates and the acetylcholinesterase activity in optic tectum cell aggregates usually lie between 40 and 90% of the values measured in vivo for the same cell (tissue) type and developmental age. However, the choline acetyltransferase activity in tectum aggregates increases only during the first 7 days of culture, and then decreases to reach a low value of 8% of that measured in vivo, by day 24. This fact, which is associated with widespread degeneration and cell death, could be attributed to the condition of natural deafferentiation occurring in a tectum cell aggregate. A parallel has been drawn between this behavior of a tectum cell aggregate and the effect of early embryonic eye removal on the development of the contralateral optic tectum in vivo. Thus, the tectum may have a biphasic pattern of development, with an autonomous period of growth of about 2 wk, followed by an afference-dependent phase, while the retina behaves, from a cholinergic point of view, as a relatively self-sufficient structure.Abbreviations AChE acetylcholinesterase - ChAT choline acetyltransferase - ACh acetylcholine - BW284 C51 dibromide 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide  相似文献   

12.
The right optic tectum of four larval stages of Bufo regularis was subjected to partial and total excision to determine the regenerative capacity of the optic tectum. Intense regenerative capacity can be observed at stage 50; the regenerated part grows to a considerable size and its structure is comparable to that of the intact part. This regenerative capacity gradually diminishes and from stage 55 onwards the decrease is pronounced. At stage 57 regenerative capacity is severly reduced and the regenerated part, if present, always has an anomalous structure.  相似文献   

13.
14.
The effect of retinal ablation on qualitative and quantitative changes of calbindin D28k and GABA expression in the contralateral optic tectum was studied in young chicks. Fifteen days old chicks had unilateral retinal ablation and after 7 or 15 days, calbindin expression was analyzed by Western blot and immunocytochemistry. Neuronal degeneration was followed by the amino-cupric silver technique. After 15 days, retinal lesions produced a significant decrease in calbindin immunostaining in the neuropil of layers 5-6 and in the somata of neurons from the layers 8 and 10 of the contralateral tectum, being this effect less marked at 7 days post-lesion. Double staining revealed that 50-60% of cells in the layers 8 and 10 were calbindin and GABA positive, 30-45% were only calbindin positive and 5-10% were only GABAergic neurons. Retinal ablation also produced a decrease in the GABA expression at either 7 or 15 days after surgery. At 7 days, dense silver staining was observed in the layers 5-6 from the optic tectum contralateral to the retinal ablation, which mainly represented neuropil that would come from processes of retinal ganglion cells. Tectal neuronal bodies were not stained with silver, although some neurons were surrounded by coarse granular silver deposits. In conclusion, most of calbindin molecules are present in neurons of the tectal GABAergic inhibitory circuitry, whose functioning apparently depends on the integrity of the visual input. A possible role of calbindin in the control of intracellular Ca2+ in neurons of this circuit when the visual transmission arrives to the optic tectum remains to be studied.  相似文献   

15.
Astrocytes have been considered to be transformed from radial glial cells that appear at early stage of development and play a scaffold-role for neuronal cell migration. Recent studies indicate that neuroepithelial cells in the spinal cord also give rise to astrocytes. However, the mode of astroglial generation and migration in the ventricular neuroepithelium remains poorly understood. In this study, we have utilized immunohistochemical and retroviral lineage tracing methods to characterize the developmental profiles of astrocytes in the chick optic tectum, which develops from both the neural tube and invasion of optic tract. Chick vimentin and glial fibrillary acidic protein (GFAP) were found as single bands at molecular weights consistent with those reported for mammalian species. Differential developmental trends were observed for both proteins with relative vimentin levels decreasing and GFAP levels increasing with embryonic age. We observed two streams of tectal GFAP-labeled astrocytes originated from the tectal ventricle (intrinsic origin) and the optic tract (extrinsic origin). The extrinsic astrocytes arose from the ventral neuroepithelium of the third ventricle, dispersed bilaterally to the optic tract, and subsequently to the outer layer of optic tectum, indicating migration of astrocytes along retinal ganglion cell axons. On the other hand, the intrinsic astrocytes from the tectal ventricular neuroepithelium appeared first in the ventral part of the optic tectum, and then in the lateral and dorsal tectum. The intrinsic tectal astrocytes closely associated with fascicles of vimentin-labeled radial glial cells, indicating a presumptive radial migration of astrocytes. These results demonstrated that the optic tectum contains heterogeneous populations of astrocytes developed from the different origins and routes of migration.  相似文献   

16.
The patterned neural projection from the eye to the optic tectum of lower vertebrates (the retinotectal projection) has been proposed to be ordered by interactions between the optic nerve fibers and their surrounding tissues. To investigate the role of one such defined cell interaction, agarose implants containing antibodies to the neural cell adhesion molecule, N-CAM, were inserted into the tectum of the African clawed frog, Xenopus laevis. Both monoclonal and polyclonal antibodies against N-CAM reversibly and specifically distorted the pattern of the retinotectal projection, decreasing the precision of the projection as determined by electrophysiological techniques as well as decreasing the density of retinal innervation of the tectum and the branching of single axons as determined by horseradish peroxidase tracing. The anatomical effects became maximal at 4 to 6 days after implantation and returned to undetectable levels by 2 weeks, whereas the physiological effects became maximal by 8 to 10 days and a normal physiological map was reestablished within 4 weeks. The results are consistent with the hypothesis that anti-N-CAM antibodies perturb the ongoing growth and retraction of the terminal arbors of the optic nerve fibers, such that a region of the tectum becomes largely denuded of fibers. The physiological defects may then be a consequence both of the initial retraction of optic nerve terminals and of the rapid ingrowth of the perturbed and neighboring optic nerve fibers into the denuded region after the antibodies were cleared from the tectum. These results support the concept of a major role for N-CAM-mediated adhesion during map regeneration and maintenance.  相似文献   

17.
Four subtypes of melatonin receptor genes (Mel(1a) 1.4, Mel(1a) 1.7, Mel(1b), and Mel(1c)) are considered to be expressed to mediate various physiological functions of melatonin in goldfish (Carassius auratus). To examine their tissue distribution and diurnal changes in expression levels, we cloned partial gene fragments for these melatonin receptor subtypes, and established specific RT-PCR and quantitative real-time PCR systems. Mel(1a) 1.4 and Mel(1b) were predominantly expressed in various neuronal and peripheral tissues, while Mel(1a) 1.7 and Mel(1c) were expressed in the restricted tissues. All subtype genes were expressed in the optic tectum, diencephalon, mesencephalon, vagal lobe, retina and spleen. The real-time PCR analyses showed that significant differences among time were observed for Mel(1a) 1.4 in the optic tectum and for Mel(1a) 1.7 and Mel(1b) in the retina. In the retina, the levels of Mel(1a) 1.7 and Mel(1b) mRNAs showed diurnal changes with one peak at ZT24. The present results show differential distribution of four subtypes of melatonin receptor mRNAs in the neuronal and peripheral tissues. However, the expressions of all subtype genes in the retinorecipient brain regions and retina reinforce the role of the melatonin receptor in processing visual information. Furthermore, the present study demonstrates diurnal expressions of the major subtype genes, i.e. Mel(1a) 1.4 in the optic tectum and Mel(1a) 1.7 in the retina.  相似文献   

18.
19.
Heterotopic transplantation of brain vesicles between chick and quail were performed, and the correlation between tectum formation and the expression of two PAX family genes, PAX7 and PAX6 , analyzed. Reciprocal transplantation between the prosencephalon and mesencephalon showed that formation of the tectum always coincided with induction/maintenance of PAX7 and suppression of PAX6 , indicating that switch-on or -off of these two PAX family genes in region specific manners are responsible for the differentiation of brain vesicles into the tectum. On the other hand, transplantation of the mesencephalic floor plate into the dorsal mesencephalon suppressed PAX7 expression in the dorsal mesencephalon and changed its fate from the tectum to the tegmentum, indicating that factors in the mesencephalic floor plate suppress PAX7 and limit tectum territory to the dorsal part of the mesencephalon.  相似文献   

20.
The responses by neurons in various layers of the pigeon's optic tectum to visual stimuli of different sizes moving at various speeds in receptive fields (RF's) were recorded by means of microelectrodes. Analysis of the relationship between the characteristics of the RF's and the location of neurons in the optic tectum showed that with increase in the depth of the layer the structure of the RF's became more complex, their size increased, the effect of peripheral inhibition decreased, and the properties of directional selectivity were displayed more clearly. A wide convergence of signals of different modalities on the efferent neurons of the optic tectum, and their rapid habituation to repeated application of stimuli, were observed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 99–105, January–February, 1971.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号