首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transmitter dopamine and the protein acetylcholinesterase are released within the substantia nigra from the dendrites of nigrostriatal neurons. These phenomena do not correspond to the familiar events involved in information transfer at the classic axons synapse. It is possible that both dopamine and acetylcholinesterase, released in the substantia nigra, are acting in a novel, perhaps synergistic, fashion as “neuromodulators”. A hypothetical mechanism of neuromodulation by dendritically released material is discussed, in the light of recent findings on the morphology and physiology of nigrostriatal neurons.  相似文献   

2.
This review describes inputs to neurons in the substantia nigra and contrasts them with the action of agonists for the putative receptors through which they act. Special emphasis is placed on gamma-aminobutyric acid (GABA) afferents. Dopamine released from the somato-dendritic compartment of dopamine neurons and endocannabinoids released from dopamine and GABA neurons serve as retrograde signals to modulate GABA release. The release may be fostered by Ca2+ release from intracellular Ca2+ stores, which in turn may be influenced by the inputs.The studies summarized in this review were supported by the Deutsche Forschungsgemeinschaft (FOR 302/TP-B1)  相似文献   

3.
4.
A decrease in activity of ubiquitin proteasome system results in accumulation of toxic forms of protein and cell degeneration, including dopamine (DA)-ergic neurons in the substantia nigra; these neurons are remarkable for their low proteolytic activity of proteosomes that makes them more vulnerable, especially when subjected to the neurotoxin action or Parkinson's disease (PD). The goal of the present study is to develop a model on the basis of inhibition of proteasome activity of nigral cell degeneration which is not accompanied by disturbances in motor behavior but leads to changes in sleep-wake cycle characteristic of the non-motor behaviour. We determined the optimal dose of natural inhibitor of proteasome lactacystin (0.4 mkg) and developed a preclinical model of PD in Wistar rats. We established that on the 14th day following lactacystin double (with one-week interval) bilateral injection into the substantia nigra the developing effects involved 28 % degeneration of DA-ergic neurons in the compact part of the substantia nigra, absence of disorders in motor behaviour, and increase in the total time of rapid eye movement sleep by 37 % at the second half of inactive day phase. These data and an increase in the level of key enzyme of DA synthesis tyrosine hydroxylase (TH) in survived neurons in the substantia nigra as well as the presence of the inverse correlation dependency (r = -0.8, p < 0.01) between the number of survived neurons and the level of TH inside them suggest a hypothesis that the increase in the duration of rapid eye movement sleep could be a non-motor marker of the preclinical stage of PD reflecting a reservation of compensatory potentials in the nigrostriatal system.  相似文献   

5.
The effects of morphine on nigrostriatal neurons (substantia nigra and caudate nucleus) were examined in mice of two strains (C58 and DBA), which differ in their locomotor response to morphine. The results did not support the hypothesis that the differences in locomotor response to morphine between the two strains are paralleled by differences in the response of nigrostriatal neurons to the same drug. The general effect of morphine on nigrostrial neurons, irrespective of strain, was to markedly depress their firing rate. Some nigrostriatal neurons initially speeded up but this effect was strain independent. This same general pattern was observed in some neurons recorded within the reticular formation. The results are discussed in relationship to the current concepts of morphine action on dopaminergic systems and the role of the nigrostriatal system in locomotor control.  相似文献   

6.
Recent findings strengthen the connection between iron accumulation in the basal ganglia, oxidative stress and nigrostriatal degeneration. Oxidative stress appears to be elevated in the normal human substantia nigra in comparison with other brain regions, and further increases occur in Parkinson's disease. Accumulation of iron may contribute to degeneration of nigral dopamine neurons by catalyzing oxidative damage to cell components and also by perturbing the network of interactions that modulate cellular redox status.  相似文献   

7.
目的探讨线刀损毁内侧前脑束建立的帕金森病模型大鼠行为学改变与黒质致密部多巴胺能神经元存活率之间的相关性。方法采用可伸缩线刀切断大鼠内侧前脑束建立单侧损伤的帕金森病大鼠模型;皮下注射阿朴吗啡后测试大鼠的旋转行为;取中脑黑质切片进行酪氨酸羟化酶免疫组织化学染色,通过计数黑质致密部酪氨酸羟化酶阳性神经元的数目得到多巴胺能神经元存活率。结果模型组大鼠损伤侧酪氨酸羟化酶阳性神经元的数目明显下降,而由阿朴吗啡诱导的旋转行为明显增加。结论线刀损毁术后4周,帕金森病模型大鼠由阿朴吗啡诱导的旋转行为和黒质致密部多巴胺能神经元存活率之间存在着明显的负相关。  相似文献   

8.
Dopaminergic neurons   总被引:2,自引:0,他引:2  
  相似文献   

9.
In vivo release of transmitters in the cat basal ganglia   总被引:3,自引:0,他引:3  
The release of transmitters was studied in various structures of the basal ganglia in cats implanted with several push-pull cannulas. Local depolarization enhanced Met-enkephalin release in the globus pallidus. Activation of striatonigral substance P(SP) neutrons stimulated the transmitter release from terminals. Unilateral electrical stimulation of the caudate nucleus evoked GABA release in both substantia nigrae and pallidoentopeduncular nuclei. The unilateral facilitation or interruption of nigral SP transmission modified dopamine (DA) release in the ipsilateral caudate nucleus in contrast, modifications of GABAergic or glycinergic nigral transmissions induced bilateral symmetrical effects, whereas bilateral asymmetrical changes in DA release in the two caudate nuclei were seen during the unilateral modification of nigral DA transmission. Changes in the dendritic release of DA induced changes in serotonin release both in the substantia nigra and in the ipsilateral caudate nucleus. Finally, it will be shown that acetylcholinesterase can be released from the substantia nigra and the caudate nucleus through processes dependent on nerve activity.  相似文献   

10.
L P Gonzalez 《Life sciences》1987,40(9):899-908
Stereotypy induced by high doses of amphetamine has been related to the ability of this drug to increase the release of dopamine in the caudate nucleus and to block its reuptake. Since amphetamine-stimulated dopamine release in the caudate is blocked by acute lesions of the nigrostriatal pathway, the mechanism by which amphetamine acts to produce stereotypy may be dependent upon intact nigrostriatal impulse flow. The present study examined the involvement of nigrostriatal impulse flow in amphetamine stereotypy by determining the effect of acute, bilateral lesions of substantia nigra pars compacta on measures of stimulant-induced stereotypy and motility. Acute nigral lesions did not significantly alter the stereotypy or motility induced by 3.0 or 6.0 mg/kg amphetamine. These results suggest that the observed behavioral effects of amphetamine do not require an intact nigrostriatal pathway, and thus may involve changes in spontaneous release or reuptake of dopamine rather than in changes in impulse-coupled dopamine release.  相似文献   

11.
The localization of gamma-aminobutyric acid transaminase (GABA-T), the degrading enzyme for γ-aminobutyric acid, was examined in the striatum and substantia nigra using biochemical techniques. Selective destruction of the nigrostriatal dopaminergic system with 6-hydroxydopamine had no effect on the activity of GABA-T in either the striatum or the substantia nigra, although striatal tyrosine hydroxylase activity was reduced by half. Intrastriatal injection of kainic acid in adult rats resulted in a significant dose-dependent decrease in GABA-T activity in both the striatum and the substantia nigra. The decrease in both of these regions was significantly correlated with the decrease in the GABA synthetic enzyme glutamate decarboxylase (GAD). The intrastriatal injection of kainic acid in ten day old rats did not affect striatal GAD or GABA-T activities, although striatal choline acetyl-transferase activity was reduced by half.It is concluded that the GABA-T activity in the striatum is predominantly localized in neuronal elements, although not, apparently, in cholinergic neurons. Some GABA-T activity is also present in the terminals of the striatonigral neurons. However, the dopaminergic nigrostriatal neurons do not appear to contain GABA-T. It is suggested that high GABA-T activity may be characteristic of GABA neurons.  相似文献   

12.
Accumulation of transition metals has been suggested to be responsible for the deteriorated nigrostriatal dopaminergic system in Parkinson's patients. In the present study, the mechanism underlying the zinc-induced neurotoxicity was investigated in the nigrostriatal dopaminergic system in vivo. Our 6-methoxy-8-paratoluene sulfonamide quinoline fluorescence study showed zinc translocation in the infused nigral cells after intranigral infusion of zinc. Furthermore, lipid peroxidation in the zinc-infused substantia nigra was consistently elevated 4 h to 7 d after the infusion. At the same time, an abrupt increase in cytosolic cytochrome c content in the infused substantia nigra was observed 4 h after zinc infusion and gradually decreased to basal levels 7 d after infusion. Both TUNEL-positive neurons and DNA fragmentation, indicatives of apoptosis, were detected in the zinc-infused substantia nigra. Furthermore, striatal dopamine content was reduced 7 d after the infusion. In attempt to prevent zinc-induced neurotoxicity, vitamin D3 was systemically administered. Zinc-induced increases in lipid peroxidation and cytosolic cytochrome c in the infused substantia nigra were prevented by this treatment. Moreover, zinc-induced reduction in striatal dopamine content was attenuated after vitamin D3 treatment. Our in vivo data suggest that zinc-induced oxidative stress may result in apoptosis followed by reduced dopaminergic function in the nigrostriatal dopaminergic system. Furthermore, vitamin D3 prevented zinc-induced oxidative injuries in the rat brain.  相似文献   

13.
Incubation of chopped tissue from the substantia nigra of the rat brain with d-amphetamine resulted in a significant release of [3H]dopamine into the incubation medium. This effect was observed with both exogenous [3H]dopamine previously taken up by the tissue and [3H]dopamine endogenously synthesized from L-[3,5-3H]tyrosine. The observed release was greater in magnitude when the apparent conversion of released dopamine to 3-methoxytyramine was taken into account. The relevance of the present results to the previously postulated self-inhibition by dopaminergic neurons of the substantia nigra pars compacta is discussed. The present data also provide support for the concept that catechol-O-methyltransferase (E.C.2.1.1.6.) is located primarily extraneuronally in brain.  相似文献   

14.
Synaptic processes in red nucleus neurons evoked by stimulation of different parts of the substantia nigra and nucleus interpositus of the cerebellum were investigated by an intracellular recording method in acute experiments on cats. Stimulation of this sort was shown to induce mono- and polysynaptic activation of rubrospinal neurons. Monosynaptic cerebellar and nigral excitatory influences were found to be very similar. These influences were shown to converge on the same rubrospinal neurons. The functional significance of inputs from the substantia nigra to the red nucleus for movement performance is discussed.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 149–158, March–April, 1981.  相似文献   

15.
Abstract: Apolipoprotein E (apoE)-deficient mice provide a useful system for studying the role of apoE in neuronal maintenance and repair. Previous studies revealed specific memory impairments in these mice that are associated with presynaptic derangements in projecting forebrain cholinergic neurons. In the present study we examined whether dopaminergic, noradrenergic, and serotonergic projecting pathways of apoE-deficient mice are also affected and investigated the mechanisms that render them susceptible. The densities of nerve terminals of forebrain cholinergic projections were monitored histochemically by measurements of acetylcholinesterase activity, whereas those of the dopaminergic nigrostriatal pathway, the noradrenergic locus coeruleus cortical projection, and the raphe-cortical serotonergic tract were measured autoradiographically using radioligands that bind specifically to the respective presynaptic transporters of these neuronal tracts. The results obtained revealed that synaptic densities of cholinergic, noradrenergic, and serotonergic projections in specific brain regions of apoE-deficient mice are markedly lower than those of controls. Furthermore, the extent of presynaptic derangement within each of these tracts was found to be more pronounced the further away the nerve terminal is from its cell body. In contrast, the nerve terminal density of the dopaminergic neurons that project from the substantia nigra to the striatum was unaffected and was similar to that of the controls. The rank order of these presynaptic derangements at comparable distances from the respective cell bodies was found to be septohippocampal cholinergic > nucleus basalis cholinergic > locus coeruleus adrenergic > raphe serotonergic ? nigrostriatal dopaminergic, which interestingly is similar to that observed in Alzheimer's disease. These results suggest that two complementary factors determine the susceptibility of brain projecting neurons to apoE deficiency: pathway-specific differences and the distance of the nerve terminals from their cell body.  相似文献   

16.
The antioxidative property of green tea against iron-induced oxidative stress was investigated in the rat brain both in vivo and in vivo. Incubation of brain homogenates at 37 degrees C for 4 hours in vitro increased the formation of Schiff base fluorescent products of malonaldehyde, an indicator of lipid peroxidation. Auto-oxidation (without exogenous iron) of brain homogenates was inhibited by green tea extract in a concentration-dependent manner. Moreover, incubation with iron (1 microM) elevated lipid peroxidation of brain homogenates after 4-hour incubation at 37 degrees C. Co-incubation with green tea extract dose-dependently inhibited the iron-induced elevation in lipid peroxidation. For the in vivo studies: ferrous citrate (iron, 4.2 nmoles) was infused intranigrally and induced degeneration of the nigrostriatal dopaminergic system of rat brain. An increase in lipid peroxidation in substantia nigra as well as a decrease in dopamine content in striatum was observed seven days after the iron infusion. Intranigral infusion of green tea extract alone did not increase, and in some cases, even decreased lipid peroxidation in substantia nigra. Co-infusion of green tea extract prevented oxidative injury induced by iron. Both iron-induced elevation in lipid peroxidation in substantia nigra and iron-induced decrease in dopamine content in striatum were suppressed. Oral administration of green tea extract for two weeks did not prevent the iron-induced oxidative injury in nigrostriatal dopaminergic system. Our results suggest that intranigral infusion of green tea extract appears to be nontoxic to the nigrostriatal dopaminergic system. Furthermore, the potent antioxidative action of green tea extract protects the nigrostriatal dopaminergic system from the iron-induced oxidative injury.  相似文献   

17.
Acetylcholinesterase release in the guinea-pig substantia nigra has been previously investigated ‘on-line’, using a sensitive chemiluminescent system. Since histological observations suggest that there is a difference in acetylcholinesterase distribution in the rat substantia nigra compared to that of the guinea-pig, the first aim of the present study was to use this chemiluminescent method to characterise acetylcholinesterase release in this brain region of the freely moving rat, and the second was explore the relationship between acetylcholinesterase release and dopamine systems in this region. Accordingly, acetylcholinesterase release in the rat substantia nigra was studied under basal conditions of spontaneous release and following the local administration of (a) elevated potassium ions (30, 45, 60 mM), (b) a stimulator of dopamine/acetylcholinesterase release—D-amphetamine (10−7, 10−6 and 10−5 M), (c) an inhibitor of dopamine uptake—GBR12909 (10−7, 10−6 and 10−5 M). Spontaneous release of acetylcholinesterase in this brain region of the rat appears to be comparable with that observed in the guinea-pig, despite the smaller number of acetylcholinesterase-containing neurones. Furthermore, not only elevated potassium ions, but -amphetamine as well as GBR12909, all produced significant increases in the percentage spontaneous release of acetylcholinesterase. Thus, the release of acetylcholinesterase in this region may be triggered by levels of dopamine outside of the neurone. Copyright © 1996 Elsevier Science Ltd  相似文献   

18.
The possible existence of a direct projection from the substantia nigra to the pulvinar-lateral posterior complex (Pul-LP) was investigated in the cat by using the horseradish peroxidase technique. In particular horseradish peroxidase was injected in the Pul-LP of 8 animals, either unilaterally or bilaterally. Tissue sections obtained from the cat's brain 24-48 hrs. after injection were prepared according to Mesulam's method as slightly modified by the authors. Retrogradelly labelled neurons were observed in substantia nigra pars lateralis and reliculata ipsilaterally to the injected pulvinar-lateral posterior complex. A small number of labelled cells were also found in the contralateral substantia nigra. These findings demonstrate the existence of a close connection between two system which are involved in turning behavior: the nigrostriatal and the pulvinar-lateral posterior complex-superior colliculus.  相似文献   

19.
Parkinson's disease prevalence is rapidly increasing in an aging global population. With this increase comes exponentially rising social and economic costs, emphasizing the immediate need for effective disease‐modifying treatments. Motor dysfunction results from the loss of dopaminergic neurons in the substantia nigra pars compacta and depletion of dopamine in the nigrostriatal pathway. While a specific biochemical mechanism remains elusive, oxidative stress plays an undeniable role in a complex and progressive neurodegenerative cascade. This review will explore the molecular factors that contribute to the high steady‐state of oxidative stress in the healthy substantia nigra during aging, and how this chemical environment renders neurons susceptible to oxidative damage in Parkinson's disease. Contributing factors to oxidative stress during aging and as a pathogenic mechanism for Parkinson's disease will be discussed within the context of how and why therapeutic approaches targeting cellular redox activity in this disorder have, to date, yielded little therapeutic benefit. We present a contemporary perspective on the central biochemical contribution of redox imbalance to Parkinson's disease etiology and argue that improving our ability to accurately measure oxidative stress, dopaminergic neurotransmission and cell death pathways in vivo is crucial for both the development of new therapies and the identification of novel disease biomarkers.  相似文献   

20.
The dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) gene encodes a protein kinase known to play a critical role in neurodevelopment. Mice with one functional copy of Dyrk1A (Dyrk1A(+/-)) display a marked hypoactivity and altered gait dynamics in basal conditions and in novel environments. Dopamine (DA) is a key neurotransmitter in motor behavior and genetic deletion of certain genes directly related to the dopaminergic system has a strong impact on motor activity. We have studied the effects of reduced Dyrk1A expression on the function of the nigrostriatal dopaminergic system. To characterize the dopaminergic system in DYRK1A(+/-) mice, we have used behavioral, pharmacological, histological, neurochemical and neuroimaging (microPET) techniques in a multidisciplinary approach. Dyrk1A(+/-) mice exhibited decreased striatal DA levels, reduced number of DA neurons in the substantia nigra pars compacta, as well as altered behavioral responses to dopaminergic agents. Moreover, microdialysis experiments revealed attenuated striatal DA release and positron emission tomography scan display reduced forebrain activation when challenged with amphetamine, in Dyrk1A(+/-) compared with wild-type mice. These data indicate that Dyrk1A is essential for a proper function of nigrostriatal dopaminergic neurons and suggest that Dyrk1A(+/-) mice can be used to study the pathogenesis of motor disorders involving dopaminergic dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号