首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-based antitumor immunity is driven by CD8(+) cytotoxic T cells bearing TCR that recognize specific tumor-associated peptides bound to class I MHC molecules. Of several cellular proteins involved in T cell:target-cell interaction, the TCR determines specificity of binding; however, the relative amount of its contribution to cellular avidity remains unknown. To study the relationship between TCR affinity and cellular avidity, with the intent of identifying optimal TCR for gene therapy, we derived 24 MART-1:27-35 (MART-1) melanoma Ag-reactive tumor-infiltrating lymphocyte (TIL) clones from the tumors of five patients. These MART-1-reactive clones displayed a wide variety of cellular avidities. alpha and beta TCR genes were isolated from these clones, and TCR RNA was electroporated into the same non-MART-1-reactive allogeneic donor PBMC and TIL. TCR recipient cells gained the ability to recognize both MART-1 peptide and MART-1-expressing tumors in vitro, with avidities that closely corresponded to the original TCR clones (p = 0.018-0.0003). Clone DMF5, from a TIL infusion that mediated tumor regression clinically, showed the highest avidity against MART-1 expressing tumors in vitro, both endogenously in the TIL clone, and after RNA electroporation into donor T cells. Thus, we demonstrated that the TCR appeared to be the core determinant of MART-1 Ag-specific cellular avidity in these activated T cells and that nonreactive PBMC or TIL could be made tumor-reactive with a specific and predetermined avidity. We propose that inducing expression of this highly avid TCR in patient PBMC has the potential to induce tumor regression, as an "off-the-shelf" reagent for allogeneic melanoma patient gene therapy.  相似文献   

2.
The assessment of the TCR repertoire expressed by tumor-specific CD8+ T lymphocytes has been hampered to date by the difficulty of targeting the analysis to lymphocytes directed against a single epitope. In the present study we have used fluorescent A2/Melan-A tetramers in conjunction with anti-CD8 and anti-TCR beta-chain variable (BV) mAbs to analyze by flow cytometry the BV segment usage by Melan-A-specific CD8+ T cells in tumor-infiltrated lymph nodes (TILN) and tumor-infiltrating lymphocytes (TIL) from A2 melanoma patients. Analysis of TILN populations revealed small proportions of A2/Melan-A tetramer+ cells expressing many different BV together with over-representation of A2/Melan-A tetramer+ cells expressing certain BVs. The BV usage by A2/Melan-A tetramer+ lymphocytes in TIL was more restricted than that in TILN. Moreover, the predominant BV segments were quite distinct in populations derived from different patients. A2/Melan-A tetramer+ cells expressing the dominant BVs found in TILN could also be found in the corresponding peptide-stimulated autologous PBMC, although A2/Melan-A tetramer+ lymphocytes expressing additional BVs were also identified. Together, these results suggest that a large and diverse repertoire of Melan-A-specific T cells using different BV TCR segments is available in A2 melanoma patients.  相似文献   

3.
Melan-A/MART1 is a melanocytic differentiation antigen recognized on melanoma tumor cells by CD8+ and CD4+ T cells. In this study, we describe a new epitope of this protein recognized in the context of HLA-Cw*0701 molecules by a CD8+ tumor infiltrating lymphocyte (TIL) clone. This CD8+ TIL clone specifically recognized and killed a fraction of melanoma cells lines expressing Melan-A/MART1 and HLA-Cw*0701. We further show that the Melan-A/MART151–61 peptide is the optimal peptide recognized by this clone. Together, these data significantly enlarge the fraction of melanoma patients susceptible to benefit from a Melan-A/MART1 vaccine approach.  相似文献   

4.
In this study, we report the adoptive transfer of highly tumor-reactive Melan-A-specific T cell clones to patients with metastatic melanoma, and the follow-up of these injected cells. These clones were generated from HLA-A*0201 patients by in vitro stimulations of total PBMC with the HLA-A*0201-binding Melan-A peptide analog ELAGIGILTV. Ten stage IV melanoma patients were treated by infusion of these CTL clones with IL-2 and IFN-alpha. The generated T cell clones, of effector/memory phenotype were selected on the basis of their ability to produce IL-2 in response to HLA-A*0201 Melan-A-positive melanoma lines. Infused clones were detected, by quantitative PCR, in the blood of three patients for periods ranging from 7 to 60 days. Six patients showed regression of individual metastases or disease stabilization, and one patient experienced a complete response, but no correlation was found between the detection of the infused clones in PBMC or tumor samples and clinical responses. Nonetheless, frequencies of Melan-A/A2-specific lymphocytes, measured by tetramer labeling, increased after treatment in most patients. In one of these patients, who showed a complete response, this increase corresponded to the expansion of new clonotypes of higher avidity than those detected before treatment. Together, our results suggest that infused CTL clones may have initiated an antitumor response that may have resulted in the expansion of a Melan-A-specific CTL repertoire.  相似文献   

5.
 The rationale of treating melanoma patients by infusion with tumor-infiltrating leukocytes (TIL) is to perform an adoptive therapy through injection of tumor-specific T cells. Nonetheless, methods currently used for ex vivo TIL expansion have not been evaluated for their efficacy to expand TAA-specific T cells. We have addressed this question here, using a culture method in which high TIL growth was induced by a polyclonal T cell stimulus. Intracellular cytokine assays were performed to measure the proportion of T cells responding to autologous tumor cells among the lymphocytes from lymph node biopsies (TIL) of 26 patients with stage III melanoma. The data show that TIL from 18 of these patients contained detectable amounts of tumor-specific T cells before expansion. Although they decreased somewhat in percent abundance during expansion, they were still present afterwards, ranging from 0.3 to 13.8%. Since a median number of 1.7 × 1010 TIL was obtained from these patients (starting from 3.6 × 106 TIL), a total amount of tumor-reactive cytokine-secreting TIL of between 2.8 × 106 and 1.12 × 109 was obtained in each case from 18 patients. The TIL populations from 8 patients did not contain tumor-reactive T cells: neither before expansion, nor after expansion. Lack of tumor-reactive TIL only occurs for patients bearing several tumor-invaded lymph nodes (40%), but not for those having a single invaded lymph node. Therefore, high numbers of tumor-reactive T cells can be produced, through a polyclonal TIL stimulation, from most early stage III melanoma patients but from only about half of the patients with a more disseminated disease. For this last group, the possibility of getting tumor-reactive TIL can be predicted by checking the presence of these cells before expansion. Received: 16 November 2000 / Accepted: 18 January 2001  相似文献   

6.
The spontaneous cytotoxic T cell responses to melanoma differentiation antigens and influenza matrix peptide were compared in 20 HLA-A2+ melanoma patients and 17 healthy A2+ individuals. Cytotoxic T lymphocyte (CTL) responses were determined by mixed lymphocyte peptide culture (MLPC) involving two stimulations of unfractionated peripheral blood lymphocytes (PBLs) with peptide in vitro. CTL responses to Melan-A 9-mer (amino acids 27–35, AAGIGILTV) peptide were detected in 4 out of 16 normal individuals, but in none of the melanoma patients. CTL specific for influenza matrix peptide were frequently found in both normal individuals and melanoma patients, suggesting that generalized immuno-suppression was not responsible for this difference. No significant responses were observed in either normal individuals or melanoma patients to Melan-A 10-mer (26–35, EAAGIGILTV), two gp100 epitopes (280–288, YLEPGPVTA; 457–466, LLDGTATLRL) and two tyrosinase epitopes (1–9, MLLAVLYCL; 368–376, YMDGMSQV). Melan-A (27–35)-specific CTL cells generated by normal individuals and melanoma patients recognized both synthetic peptide-pulsed T2 cells and two HLA-A2+, Melan-A+ melanoma cell lines (ME272, LAR1) in an antigen-specific, MHC class I restricted manner. T cells generated against Melan-A 9-mer were also able to recognize Melan-A 10-mer-pulsed target cells. Spontaneous CTL responses to Melan-A 9-mer from three known responder normal individuals were further evaluated over a prolonged time course (6–11 months). All 3 subjects demonstrated specific Melan-A 9-mer responses throughout the study period, although lytic activity fluctuated over time for a given individual. We found the MLPC assay to be reliable and easy to perform for monitoring T cell responses, although it may still not be sufficiently sensitive to detect low numbers of precursor T cells. Received: 21 May 1998 / Accepted: 23 July 1998  相似文献   

7.
8.
Synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) have recently emerged as a useful tool for the analysis of T cell recognition. This includes identification of potentially cross-reactive sequences of self or pathogen origin that could be relevant for the understanding of TCR repertoire selection and maintenance, as well as of the cross-reactive potential of Ag-specific immune responses. In this study, we have analyzed the recognition of sequences retrieved by using a biometric analysis of the data generated by screening a PS-SCL with a tumor-reactive CTL clone specific for an immunodominant peptide from the melanocyte differentiation and tumor-associated Ag Melan-A. We found that 39% of the retrieved peptides were recognized by the CTL clone used for PS-SCL screening. The proportion of peptides recognized was higher among those with both high predicted affinity for the HLA-A2 molecule and high predicted stimulatory score. Interestingly, up to 94% of the retrieved peptides were cross-recognized by other Melan-A-specific CTL. Cross-recognition was at least partially focused, as some peptides were cross-recognized by the majority of CTL. Importantly, stimulation of PBMC from melanoma patients with the most frequently recognized peptides elicited the expansion of heterogeneous CD8(+) T cell populations, one fraction of which cross-recognized Melan-A. Together, these results underline the high predictive value of PS-SCL for the identification of sequences cross-recognized by Ag-specific T cells.  相似文献   

9.
Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t(1/2) of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8(+) T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.  相似文献   

10.
CD4+ T cells contribute importantly to the antitumor T cell response, and thus, long peptides comprising CD4 and CD8 epitopes may be efficient cancer vaccines. We have previously identified an overexpressed antigen in melanoma, MELOE-1, presenting a CD8+ T cell epitope, MELOE-136–44, in the HLA-A*0201 context. A T cell repertoire against this epitope is present in HLA-A*0201+ healthy subjects and melanoma patients and the adjuvant injection of TIL containing MELOE-1 specific CD8+ T cells to melanoma patients was shown to be beneficial. In this study, we looked for CD4+ T cell epitopes in the vicinity of the HLA-A*0201 epitope. Stimulation of PBMC from healthy subjects with MELOE-126–46 revealed CD4 responses in multiple HLA contexts and by cloning responsive CD4+ T cells, we identified one HLA-DRβ1*1101-restricted and one HLA-DQβ1*0603-restricted epitope. We showed that the two epitopes could be efficiently presented to CD4+ T cells by MELOE-1-loaded dendritic cells but not by MELOE-1+ melanoma cell-lines. Finally, we showed that the long peptide MELOE-122–46, containing the two optimal class II epitopes and the HLA-A*0201 epitope, was efficiently processed by DC to stimulate CD4+ and CD8+ T cell responses in vitro, making it a potential candidate for melanoma vaccination.  相似文献   

11.
Therapeutic cancer vaccines need to stimulate a refractory immune system to make an effective anti-tumour response. We have explored the use of lentiviral vectors to deliver tumour antigen genes to dendritic cells (DC) as a possible mechanism of immune stimulation. Direct injection of a lentiviral vector encoding the melanoma antigen NY-ESO-1 in HLA-A2 transgenic mice primed NY-ESO-1-specific CD8+ cells that could be expanded by boosting with an NY-ESO-1 vaccinia virus. The expanded cells could kill NY-ESO-1157–165 peptide-pulsed targets in vivo. In order to examine the priming step directly, we constructed another lentiviral vector expressing the melanoma antigen Melan-A (MART-1). Here we show that Melan-A protein is also efficiently expressed after transduction of human DC cultured from peripheral blood mononuclear cells. When these transduced DC are co-cultured with autologous naïve T cells, they cause the expansion of cells that recognise the HLA-A2 restricted Melan-A27–35 epitope. The expanded cells are functional in that they release IFN-γ upon antigen stimulation. Melan-A lentiviral vector transduced DC caused a similar level of naïve T-cell expansion to Melan-A27–35 peptide-pulsed DC in four experiments using different HLA-A2 positive donors. These data suggest that a vaccine based either on DC transduced with a lentiviral vector ex vivo, or on direct lentiviral vector injection, should be assessed in a phase I clinical trial.This article is a symposium paper from the “Robert Baldwin Symposium: 50 years of Cancer Immunotherapy”, held in Nottingham, Great Britain, on 30th June 2005.  相似文献   

12.
The adoptive transfer of tumor-reactive CD8(+) T cells into tumor-bearing hosts provides an attractive alternative to vaccination-based active immunotherapy of melanoma. The development of techniques that result in the preferential expansion of tumor-reactive T cells is therefore of great importance. In this study, we report the generation of HLA-A*0201-restricted CD8(+) T cell populations that recognize either tyrosinase(369-376) or gp100(209-217) from tolerant human class I MHC-transgenic mice by using single amino acid-substituted variant peptides. Low peptide concentration or restimulation with the parent peptide was used to enhance the functional avidity, defined by stimulation of IFN-gamma accumulation, and cross-reactivity of the resulting T cell populations. We found a direct correlation between the ability of a T cell population to respond in vitro to low concentrations of the precise peptide expressed on the tumor and its ability to delay the outgrowth of B16 melanoma after adoptive transfer. Surprisingly, we found that some T cells that exhibited high functional avidity and were effective in controlling tumor outgrowth exhibited low structural avidity, as judged by MHC-tetramer staining. Our results establish strategies for the development and selection of CD8(+) T cell populations that persist despite peripheral tolerance, and that can control melanoma outgrowth. Furthermore, they support the use of human MHC class I-transgenic mice as a preclinical model for developing effective immunotherapies that can be rapidly extended into therapeutic settings.  相似文献   

13.
Melanoma reactive CTL were obtained by stimulating PBL from a melanoma patient in remission since 1994 following adjuvant TIL immunotherapy, with the autologous melanoma cell line. They were cloned by limiting dilution. One CTL clone recognized melanoma cell lines expressing tyrosinase and the B*4002 molecule, either spontaneously or upon transfection. We demonstrated that this clone recognizes the tyrosinase-derived nonapeptide 316-324 (ADVEFCLSL) and the overlapping decapeptide 315–324 (SADVEFCLSL). We derived two distinct additional specific CTL clones from this same patient that were also reactive against B*4002 melanoma cell lines, suggesting a relative diversity of this specific repertoire in this patient. Stimulating PBMC derived from four additional B*4002 melanoma patients with the tyrosinase 316–324 nonapeptide induced the growth of specific cells for two of the patients, demonstrating the immunogenicity of this new epitope. Our data show that this nonapeptide is a new tool that could be used to generate melanoma-specific T cells for adoptive immunotherapy or serve as a peptide vaccine for HLA-B*4002 melanoma patients.  相似文献   

14.
15.
Lymphocytes expanded from excised specimens can be used to characterize intratumoral T cell responses. These analyses, however, are limited to one time point in the natural history of the removed tumor. The expansion of autologous tumor cells and tumor-infiltrating lymphocytes (TIL) from fine needle aspirates (FNA) of tumors potentially allows a dynamic evaluation of T cell responses within the same lesion at moments relevant to the disease course or response to therapy. Fourteen TIL cultures and 8 tumor cell lines were generated from 18 FNA (12 patients). Five of six TIL that could be tested against autologous tumor demonstrated specific reactivity. Two additional TIL for which no autologous tumor was available demonstrated recognition of HLA-matched melanoma cell lines. Serial FNA of the same lesions were performed in five HLA-A*0201 patients vaccinated with the emulsified melanoma Ag (MA) epitopes: MART-1:27-35; tyrosinase:368-376(370D); gp100:280-288(288V); and gp100:209-217 (210M). FNA material was separately cultured for a short time in IL-2 (300 IU/ml) after stimulation with irradiated autologous PBMC pulsed with each peptide or FluM1:58-66 (1 micromol/ml). No peptide-specific TIL could be expanded from prevaccination FNA. However, after vaccination, TIL specific for gp100:280(g280), gp100:209 (g209), and MART-1:27-35 (MART-1)-related epitopes were identified in three, three, and two patients, respectively. No Flu reactivity could be elicited in TIL, whereas it was consistently present in parallel PBMC cultures. This excluded PBMC contamination of the FNA material. This analysis suggests the feasibility of TIL expansion from minimal FNA material and localization of vaccine-specific T cells at the tumor site.  相似文献   

16.
Melan-A/MART1 is a melanocytic differentiation antigen expressed by tumor cells of the majority of melanoma patients and, as such, is considered as a good target for melanoma immunotherapy. Nonetheless, the number of class I and II restricted Melan-A epitopes identified so far remains limited. Here we describe a new Melan-A/MART-1 epitope recognized in the context of HLA-DQa1*0101 and HLA-DQb1*0501, -DQb1*0502 or -DQb1*0504 molecules by a CD4+ T cell clone. This clone was obtained by in vitro stimulation of PBMC from a healthy donor by the Melan-A51-73 peptide previously reported to contain a HLA-DR4 epitope. The Melan-A51-73 peptide, therefore contains both HLA-DR4 and HLA-DQ5 restricted epitope. We further show that Melan-A51-63 is the minimal peptide optimally recognized by the HLA-DQ5 restricted CD4+ clone. Importantly, this clone specifically recognizes and kills tumor cell lines expressing Melan-A and either HLA-DQb1*0501, -DQb1*0504 or -DQb1*0502 molecules. Moreover, we could detect CD4+ T cells secreting IFN-gamma in response to Melan-A51-63 and Melan-A51-73 peptides among tumor infiltrating and blood lymphocytes from HLA-DQ5+ patients. This suggests that spontaneous CD4+ T cell responses against this HLA-DQ5 epitope occur in vivo. Together these data significantly increase the fraction of melanoma patients susceptible to benefit from a Melan-A class II restricted vaccine approach.  相似文献   

17.
The melanoma-associated protein Melan-A contains the immunodominant CTL epitope Melan-A(26/27-35)/HLA-A*0201 against which a high frequency of T lymphocytes has been detected in many melanoma patients. In this study we show that the in vitro degradation of a polypeptide encompassing Melan-A(26/27-35) by proteasomes produces both the final antigenic peptide and N-terminally extended intermediates. When human melanoma cells expressing the corresponding fragments were exposed to specific CTL, those expressing the minimal antigenic sequence were recognized more efficiently than those expressing the N-terminally extended intermediates. Using a tumor-reactive CTL clone, we confirmed that the recognition of melanoma cells expressing an N-terminally extended intermediate of Melan-A is inefficient. We demonstrated that the inefficient cytosolic trimming of N-terminally extended intermediates could offer a selective advantage for the preferred presentation of Melan-A peptides directly produced by the proteasomes. These results imply that both the proteasomes and postproteasomal peptidases limit the availability of antigenic peptides and that the efficiency of presentation may be affected by conditions that alter the ratio between fully and partially processed proteasomal products.  相似文献   

18.
Adoptive therapy for cancer using tumor-infiltrating lymphocytes (TIL) has mainly been investigated in cancer patients with advanced stage disease. The limited clinical success has not been encouraging, although this might be explained by poor TIL specificity and/or high tumor burden. To re-evaluate the effectiveness of adoptive therapy, we analyzed the capacity of tumor-reactive TIL injection in preventing the further development of disease in stage III melanoma patients after complete tumor resection. A phase II/III randomized trial was performed on 88 melanoma patients, who received autologous TIL plus interleukin-2 (IL-2) or IL-2 only. The duration of relapse-free survival was analyzed, taking into account the immunological specificity of injected TIL and the number of metastatic lymph nodes removed before treatment. Kaplan-Meyer analysis revealed that the injection of tumor-reactive TIL was statistically correlated with prolonged relapse-free survival in patients with only one metastatic lymph node. Therefore, improved clinical outcome could be obtained after adoptive therapy by selecting appropriate groups of patients and monitoring the specificity of the injected TIL populations.  相似文献   

19.
In HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules. Based on these findings, we compared the CD8 T cell response to human and murine Melan-A peptide by immunizing HLA-A2 transgenic mice. Even though the magnitude of the CTL response elicited by the murine Melan-A peptide was lower than the one elicited by the human Melan-A peptide, both populations of CTL recognized the corresponding immunizing peptide with the same functional avidity. Interestingly, CTL specific for the murine Melan-A peptide were completely cross-reactive against the orthologous human peptide, whereas anti-human Melan-A CTL recognized the murine Melan-A peptide with lower avidity. Structurally, this discrepancy could be explained by the fact that Ile32 of murine Melan-A24-33 created a larger TCR contact area than Thr34 of human Melan-A26-35. These data indicate that, even if immunizations with orthologous peptides can induce strong specific T cell responses, the quality of this response against syngeneic targets might be suboptimal due to the structure of the peptide-TCR contact surface.  相似文献   

20.
Cancer vaccines can induce the in vivo generation of tumor Ag-specific T cells in patients with metastatic melanoma yet seldom elicit objective clinical responses. Alternatively, adoptive transfer of autologous tumor-infiltrating lymphocytes (TIL) can mediate tumor regression in 50% of lymphodepleted patients, but are logistically and technically difficult to generate. In this study, we evaluated the capability of vaccine-induced PBMC to mediate tumor regression after transfer to patients receiving the same chemotherapy-induced lymphodepletion used for TIL transfer therapy. Autologous PBMC from nine gp100-vaccinated patients with metastatic melanoma were stimulated ex vivo with the gp100:209-217(210M) peptide and transferred in combination with high-dose IL-2 and cancer vaccine. Transferred PBMC contained highly avid, gp100:209-217 peptide-reactive CD8(+) T cells. One week after transfer, lymphocyte counts peaked (median of 14.3 x 10(3) cells//microl; range of 0.9-59.7 x 10(3) cells/microl), with 56% of patients experiencing a lymphocytosis. gp100:209-217 peptide-specific CD8(+) T cells persisted at high levels in the blood of all patients and demonstrated significant tumor-specific IFN-gamma secretion in vitro. Melanocyte-directed autoimmunity was noted in two patients; however, no patient experienced an objective clinical response. These studies demonstrate the feasibility and safety of using vaccine-induced PBMC for cell transfer, but suggests that they are not as effective as TIL in adoptive immunotherapy even when transferred into lymphodepleted hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号