首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The histochemical ATPase activity and the myosin light chains of a rat fast muscle (extensor digitorum longus, EDL) and a rat slow muscle (soleus) during development have been investigated. Both muscles initially synthesize fast myosin light chains and show the intense histochemical ATPase activity characteristic of adult fast muscle fibers. After birth, the soleus begins to accumulate slow fibers with their characteristic low histochemical ATPase activity, and slow myosin light chains begin to appear. Sciatic neurectomy prevents the development of slow fibers and the synthesis of slow myosin light chains in the soleus, while the EDL is unaffected. Similarly, cordotomy of an adult rat results, in the soleus, in the appearance of fibers with more intense staining for ATPase and an increase in fast myosin light chains. The EDL is unchanged by cordotomy. As a result, we suggest that slow muscle development, but not fast muscle development, is dependent upon the functional activity of the nervous system.  相似文献   

2.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

3.
Abstract. Myosin isozymes from the slow soleus and fast EDL muscles of the rat hindlimb were analyzed by pyrophosphate gel electrophoresis, by peptide mapping of heavy chains, and by antibody staining. At the earliest stage examined, 20 days gestation, distinctions between the developing fast and slow muscles were seen by all these criteria; all fibers in the distal hindlimb reacted strongly with antibody to adult fast myosin. Some fibers also reacted with antibody to adult slow myosin; these fibers had a precise, axial distribution in the hindlimb. This pattern of staining which includes the entire soleus, foreshadows the adult distribution of slow fibers and may indicate that the specific pattern of innervation of the limb is already determined. In the early developing soleus there are four fetal and neonatal isozymes plus two isozymes present in equal proportions in the 'slow' area of the pyrophosphate gel. The mobility of these two slow isozymes decreases with maturity and the slowest moving isozyme gradually becomes the dominant species. Thus early diversity between the soleus and EDL is expressed by myosins which are distinct from the mature isozymes. The relative proportion of slow isozymes significantly increases with development and as this occurs the fetal and neonatal isozymes are progressively eliminated. Transiently at least one mature fast isozyme appears in the soleus. This is present at 15 days postpartum and probably correlates with the population of fast, type II fibers, which comprise 50% of this muscle cell population at 15 days. The EDL contained three fetal and neonatal isozymes and only one slow isozyme which does not change in mobility with age. Slow isozymes in the soleus and EDL are thus not identical. Each muscle underwent a unique series of changes until the adult pattern of isozymes and heavy chains was reached about one month postpartum.  相似文献   

4.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

5.
Myosin isozymes and their fiber distribution were studied during regeneration of the soleus muscle of young adult (4-6 week old) rats. Muscle degeneration and regeneration were induced by a single subcutaneous injection of a snake toxin, notexin. If reinnervation of the regenerating muscle was allowed to occur (functional innervation nearly complete by 7 days), then fiber diameters continued to increase and by 28 days after toxin treatment they attained the same values as fibers in the contralateral soleus. If the muscles were denervated at the time of toxin injection, the early phases of regeneration still took place but the fibers failed to continue to increase in size. Electrophoresis of native myosin showed multiple bands between 3 and 21 days of regeneration which could be interpreted as indicating the presence of embryonic, neonatal, fast and slow myosins in the innervated muscles. Adult slow myosin became the exclusive from in innervated regenerates. In contrast, adult fast myosin became the predominant form in denervated regenerating muscles. Immunocytochemical localization of myosin isozymes demonstrated that in innervated muscles the slow form began to appear in a heterogeneous fashion at about 7 days, and became the major form in all fibers by 21-28 days. Thus, the regenerated muscle was almost entirely composed of slow fibers, in clear contrast to the contralateral muscle which was still substantially mixed. In denervated regenerating muscles, slow myosin was not detected biochemically or immunocytochemically whereas fast myosin was detected in all denervated fibers by 21-28 days. The regenerating soleus muscle therefore is clearly different from the developing soleus muscle in that the former is composed of a uniform fiber population with respect to myosin transitions. Moreover the satellite cells which account for the regeneration process in the soleus muscle do not appear to be predetermined with respect to myosin heavy chain expression, since the fibers they form can express either slow or fast isoforms. The induction of the slow myosin phenotype is entirely dependent on a positive, extrinsic influence of the nerve.  相似文献   

6.
Plasticity of mature muscles exposed to different activation patterns is limited, probably due to restricted adaptive range of their muscle fibres. In this study, we tested whether satellite cells derived from slow muscles can give rise to a normal fast muscle, if transplanted to the fast muscle bed. Marcaine-treated rat soleus and extensor digitorum longus (EDL) muscles were transplanted to the EDL muscle bed and innervated by the EDL nerve. Six months later expression of myosin heavy chain isoforms was analysed by areal densities of fibres, binding specific monoclonal antibodies, and by SDS gel electrophoresis. Both regenerated muscles closely resembled each other. Their myosin heavy chain profiles were similar to those in fast muscles although they were not identical to that in the control EDL muscle. Since not even regenerated EDL was able to reach the myosin heavy chain isoform profile of mature EDL muscle, our experimental model did not permit studying the adaptive capacity of satellite cells in different muscles in its whole extent. However, the results favour the multipotential myoblast stem cell population in rat muscles and underline the importance of the extrinsic regulation of muscle phenotype.  相似文献   

7.
Abstract. Satellite cells were isolated at high yields from slow-twitch soleus and fast-twitch tibialis anterior (TA) muscles of adult male Wistar rats. The number of satellite cells isolated from soleus muscle exceeded that from TA muscles by a factor of three. A comparison of satellite cells grown on gelatin- or Matrigel-coated dishes revealed that Matrigel greatly enhances the maturation of the satellite-cell-derived myotubes. As judged from immunohistochemistry, myosin heavy chain electrophoresis and immunoblot analyses, only cells grown on Matrigel, but not on gelatin, expressed adult myosin isoforms. Slow myosin expression was only detected in Matrigel cultures. Soleus cultures contained, in addition to the majority of myotubes expressing fast myosin, a small fraction (maximally 10%) of myotubes coexpressing fast and slow myosins. The number of fast/slow myosin-containing myotubes was negligible in TA cultures. The expression of slow myosin increased with age. Slow myosin was nonuniformly distributed along the length of specific myotubes and accumulated around some myonuclei. These results point to the existence of myotubes with a heterogeneous population of myonuclei, probably resulting from fusion of differently preprogrammed satellite cells. We suggest that the patch-like expression of slow myosin results from local accumulation of myonuclei of slow-type satellite cells.  相似文献   

8.
9.
Three adult skeletal muscle sarcomeric myosin heavy chain (MHC) genes have been identified in the rat, suggesting that the expressed native myosin isoforms can be differentiated, in part, on the basis of their MHC composition. This study was undertaken to ascertain whether the five major native isomyosins [3 fast (Fm1, Fm2, Fm3), 1 slow (Sm), and 1 intermediate (Im)], typically expressed in the spectrum of adult rat skeletal muscles comprising the hindlimb, could be further differentiated on the basis of their MHC profiles in addition to their light chain composition. Results show that in muscles comprised exclusively of fast-twitch glycolytic (FG) fibers and consisting of Fm1, Fm2, and Fm3, such as the tensor fasciae latae, only one MHC, designated as fast type IIb, could be resolved. In soleus muscle, comprised of both slow-twitch oxidative and fast-twitch oxidative-glycolytic fibers and expressing Sm and Im, two MHC bands were resolved and designated as slow/cardiac beta-MHC and fast type IIa MHC. In muscles expressing a mixture of all three fiber types and a full complement of isomyosins, as seen in the plantaris, the MHC could be resolved into three bands. Light chain profiles were characterized for each muscle type, as well as for the purified isomyosins. These data suggest that Im (IIa) consists of a mixture of fast and slow light chains, whereas Fm (IIb) and Sm (beta) isoforms consist solely of fast- and slow-type light chains, respectively. Polypeptide mapping of denatured myosin extracted from muscles expressing contrasting isoform phenotypes suggests differences in the MHC primary structure between slow, intermediate, and fast myosin isotypes. These findings demonstrate that 1) Fm, Im, and Sm isoforms are differentiated on the bases of both their heavy and light chain components and 2) each isomyosin is distributed in a characteristic fashion among rat hindlimb skeletal muscles. Furthermore, these data suggest that the ratio of isomyosins in a given muscle or muscle region is of physiological importance to the function of that muscle during muscular activity.  相似文献   

10.
The total content of myosin heavy chains (MHC) and their isoform pattern were studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (extensor digitorum longus) muscles of adult rat during atrophy after denervation and recovery after self-reinnervation. The pattern of fibre types, in terms of ultrastructure, was studied in parallel. After denervation, total MHC content decreased sooner in the slow-twitch muscle than in the fast-twitch. The ratio of MHC-1 and the MHC-2B isoforms to the MHC-2A isoform decreased in the slow and the fast denervated muscles, respectively. After reinnervation of the slow muscle, the normal pattern of MHC recovered within 10 days and the type 1 isoform increased above the normal. In the reinnervated fast muscle, the 2B/2A isoform ratio continued to decrease. Traces of the embryonic MHC isoform, identified by immunochemistry, were found in both denervated and reinnervated slow and fast muscles. A shift in fibre types was similar to that found in the MHC isoforms. Within 2 months of recovery a tendency to normalization was observed. The results show that (a) MHC-2B isoform and the morphological characteristics of the 2B-type muscle fibres are susceptible to lack of innervation, similar to those of type 1, (b) during muscle recovery induced by reinnervation the MHC isoforms and muscle fibres shift transiently to type 1 in the soleus and to type 2A in the extensor digitorum longus muscles, and (c) the embryonic isoform of MHC may appear in the adult skeletal muscles if innervation is disturbed.  相似文献   

11.
At least three slow myosin heavy chain (MHC) isoforms were expressed in skeletal muscles of the developing chicken hindlimb, and differential expression of these slow MHC isoforms produced distinct fiber types from the outset of skeletal muscle myogenesis. Immunohistochemistry with isoform-specific monoclonal antibodies demonstrated differences in MHC content among the fibers of the dorsal and ventral premuscle masses and distinctions among fibers before splitting of the premuscle masses into individual muscles (Hamburger and Hamilton Stage 25). Immunoblot analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of myosin extracted from the hindlimb demonstrated the presence throughout development of different mobility classes of MHCs with epitopes associated with slow MHC isoforms. Immunopeptide mapping showed that one of the MHCs expressed in the embryonic limb was the same slow MHC isoform, slow MHC1 (SMHC1), that is expressed in adult slow muscles. SMHC1 was expressed in the dorsal and ventral premuscle masses, embryonic, fetal, and some neonatal and adult hindlimb muscles. In the embryo and fetus SMHC1 was expressed in future fast, as well as future slow muscles, whereas in the adult only the slow muscles retained expression of SMHC1. Those embryonic muscles destined in the adult to contain slow fibers or mixed fast/slow fibers not only expressed SMHC1, but also an additional slow MHC not previously described, designated as slow MHC3 (SMHC3). Slow MHC3 was shown by immunopeptide mapping to contain a slow MHC epitope (reactive with mAb S58) and to be structurally similar to a MHC expressed in the atria of the adult chicken heart. SMHC3 was designated as a slow MHC isoform because (i) it was expressed only in those muscles destined to be of the slow type in the adult, (ii) it was expressed only in primary fibers of muscles that subsequently are of the slow type, and (iii) it had an epitope demonstrated to be present on other slow, but not fast, isoforms of avian MHC. This study demonstrates that a difference in phenotype between fibers is established very early in the chicken embryo and is based on the fiber type-specific expression of three slow MHC isoforms.  相似文献   

12.
We hypothesized that a shift in muscle fiber type induced by clenbuterol would change monocarboxylate transporter 1 (MCT1) content and activity of lactate dehydrogenase (LDH) and isoform pattern and shift myosin heavy chain (MHC) pattern in soleus (Sol) and extensor digitorum longus (EDL) of male rats. In the clenbuterol-administered rats (2.0 mg x kg(-1) x day(-1) subcutaneously for 4 wk), the ratio of muscle weight to body weight increased in the Sol (P < 0.05) and the EDL (P < 0.01). Clenbuterol induced the appearance of fast MHC(2D) and decreased slow MHC(1) in Sol (13%) but had no effect on EDL. The MHC pattern of Sol changed from slow to fast type. Clenbuterol increased LDH-specific activity (P < 0.01) and the ratio of the muscle-type isozyme of LDH to the heart type (P < 0.05) in Sol. The LDH total activity of the EDL muscle was also increased (P < 0.05). Furthermore, MCT1 content significantly (P < 0.05) decreased in both Sol and EDL (27 and 52%, respectively). This study suggests that clenbuterol might mediate the shift of MHC from slow to fast type and the changes in the regulation of lactate metabolism. Novel to this study is the observation that clenbuterol decreases MCT1 content in the hindlimb muscles and that the decrease in MCT1 is not muscle-type specific. It may suggest that the genetic expressions of individual factors involving slow-type MHC, heart-type isozyme of LDH, and MCT1 are associated with one another but are regulated independently.  相似文献   

13.
The local anaesthetic (Bupivacaine (1-n-butyl-DL-piperidine-2-carboxylic acid-2, 6-dimethyl anilide hydrochloride) has been used to induce myofiber damage (and thus satellite cells proliferation) and thereby represents a tool for increasing the yield of myoblasts from adult muscles. Replicating satellite cells were isolated by enzymatic dissociation from soleus (slow type) and tibialis anterior (fast type) muscles of adult rats, and categorized by the isoform (embryonic, fast and slow) of myosin heavy chain (MHC) expressed following myotube formation in a similar in vitro environment. According to light microscopic criteria, no morphological differences exist between the satellite cell cultures obtained from adult fast and slow muscles after Bupivacaine injection. On the other hand the derived myotubes express, beside the embryonic type, the peculiar myosin heavy chains which characterize the myosin pattern of the donor muscles.  相似文献   

14.
Contractile proteins exist as a number of isoforms that show a developmental and tissue-specific pattern of expression. Using gene-specific cDNA probes, the expression of the sarcomeric myosin heavy chain (MHC) multi-gene family and of cardiac (foetal) alpha-actin was analysed in three different rat hindlimb muscles immobilised for 5 days in either the shortened or lengthened positions. For each of the MHC genes normally expressed in adult muscle (slow, IIA and IIB), the effect of disuse alone (immobilisation in the shortened position) upon expression was markedly different to that of passive stretch (immobilisation in the lengthened position) in each of the three muscles. However, the same adult sarcomeric myosin heavy chain gene can be affected in a different, or even opposite, manner by either disuse or passive stretch depending on the muscle in which it is being expressed. The fast IIB MHC gene, for example, exhibits a rapid induction in the slow postural soleus muscle, in response to disuse but no such induction occurs in the faster plantaris and gastrocnemius muscles. Furthermore, the induction of this gene in the soleus was prevented by passive stretch. The MHC gene, normally only expressed in embryonic skeletal muscle, showed a similar response in all three muscles and was reinduced in adult muscle in response to passive stretch but not by disuse alone. In contrast, the isoform of alpha-actin which is normally only present in significant quantities in embryonic skeletal muscle and which is reduced postnatally, is not reinduced by passive stretch but is reduced still further by immobilisation in the shortened position.  相似文献   

15.
16.
To reveal the effect of foreign innervation and altered thyroid status on fiber type composition and the myosin heavy chain (MyHC) isoform expression in the rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles, a method of heterochronous isotransplantation was developed. In this experimental procedure, the SOL or EDL muscles of young inbred Lewis rats are grafted either into the host EDL or SOL muscles of adult rats of the same strain with normal or experimentally altered thyroid status. To estimate the extent of fiber type transitions in the transplanted muscles, the SOL and EDL muscle from the unoperated leg and unoperated muscles from the operated leg could be legitimately used as controls, but only when the experimental procedure itself does not affect these muscles. To verify this assumption, we have compared the fiber type composition and the MyHC isoform content of unoperated contralateral SOL and EDL muscles and ipsilateral unoperated SOL muscle of experimental rats after unilateral isotransplantation into the host EDL muscle with corresponding muscles of the naive rats of the same age and strain. We provide compelling evidence that the unilateral heterochronous isotransplantation has no significant effect on the fiber type composition and the MyHC isoform content of unoperated muscles of experimental animals. Hence, these muscles can be used as controls in our grafting experiments.  相似文献   

17.
Alpha-sarcoglycan (Sgca) is a transmembrane glycoprotein of the dystrophin complex located at skeletal and cardiac muscle sarcolemma. Defects in the alpha-sarcoglycan gene (Sgca) cause the severe human-type 2D limb girdle muscular dystrophy. Because Sgca-null mice develop progressive muscular dystrophy similar to human disorder they are a valuable animal model for investigating the physiopathology of the disorder. In this study, biochemical and functional properties of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of the Sgca-null mice were analyzed. EDL muscle of Sgca-null mice showed twitch and tetanic kinetics comparable with those of wild-type controls. In contrast, soleus muscle showed reduction of twitch half-relaxation time, prolongation of tetanic half-relaxation time, and increase of maximal rate of rise of tetanus. EDL muscle of Sgca-null mice demonstrated a marked reduction of specific twitch and tetanic tensions and a higher resistance to fatigue compared with controls, changes that were not evident in dystrophic soleus. Contrary to EDL fibers, soleus muscle fibers of Sgca-null mice distinctively showed right shift of the pCa-tension (pCa is the negative log of Ca2+ concentration) relationships and reduced sensitivity to caffeine of sarcoplasmic reticulum. Both EDL and soleus muscles showed striking changes in myosin heavy-chain (MHC) isoform composition, whereas EDL showed a larger number of hybrid fibers than soleus. In contrast to the EDL, soleus muscle of Sgca-null mice contained a higher number of regenerating fibers and thus higher levels of embryonic MHC. In conclusion, this study revealed profound distinctive biochemical and physiological modifications in fast- and slow-twitch muscles resulting from alpha-sarcoglycan deficiency.  相似文献   

18.
Ca2+ATPase activity and light chains of myosin, fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in developing, adult and denervated fast, slow and cardiac muscles of the rat, guinea-pig, cat, rabbit and chick were studied. It has been shown that in normal adult muscles the electrophoretic pattern of light chains of myosin reflects the myosin ATPase activity only when muscles from the same animal species are compared. In homologous muscles from adult animals differing in size, the size-dependent difference in myosin ATPase activity is not revealed in the electrophoretic pattern. Both in developing and in denervated muscle, changes in myosin ATPase activity are either connected with changes in the pattern of light chains of myosin or this pattern does not change. This relation is different in fast and slow muscles and also differs in chick and rabbit muscles. There are several possibilities of explaining the relation between ATPase activity of myosin and the pattern of light chains of myosin. The observation that myosin from the soleus muscle of 1-month-old rabbit contains light chains corresponding to both fast and slow type of myosin, indicates that the change in myosin ATPase activity during development is due to changes in the ratio between the fast and slow type of myosin.  相似文献   

19.
Changes in the myosin phenotype of differentiated muscle are a prominent feature of the adaptation of the tissue to a variety of physiological stimuli. In the present study the molecular basis of changes in the proportion of myosin isoenzymes in rat skeletal muscle which occur during compensatory hypertrophy caused by the combined removal of synergist muscles and spontaneous running exercise was investigated. The relative amounts of sarcomeric myosin heavy (MHC)- and light (MLC)-chain mRNAs in the plantaris (fast) and soleus (slow) muscles from rats was assessed with cDNA probes specific for different MHC and MLC genes. Changes in the proportion of specific MHC mRNA levels were in the same direction as, and of similar magnitude to, changes in the proportion of myosin isoenzymes encoded for by the mRNAs. No significant changes in the proportion of MLC proteins or mRNA were detected. However, high levels of MLC3 mRNA were measured in both normal and hypertrophied soleus muscles which contained only trace amounts of MLC3 protein. Small amounts of embryonic and neonatal MHC mRNAs were induced in both muscles during hypertrophy. We conclude that the change in the pattern of myosin isoenzymes during skeletal-muscle adaptation to work overload is a consequence of changes in specific MHC mRNA levels.  相似文献   

20.
We have used a new approach to study the effects of overload on skeletal muscle phenotype in mice. The method used avoids any traumatising contact with muscles and the inflammatory reaction that this may provoke. Blocks of lead embedded in silicone were inserted under the skin of the lower part of the back. After 1 month, a 17% hypertrophy was found to have occurred in the tonic soleus muscle, but no change was observed in the fast-twitch extensor digitorum longus (EDL) muscle. The main effects on the contractile properties of the soleus muscle were a decrease in the tetanic relaxation rate and a reduction in the maximal velocity of shortening. Immunohistological analysis of the soleus muscles revealed an increase in the proportion of fibres that express myosin heavy chain (MHC) 1, from 54.2% to 73.9%, with a reduction in the proportion of MHC2a-positive fibres, from 45.8% to 30.2%. These changes were accompanied by an increase in the proportion of fibres that express the slow type of sarcoplasmic reticulum calcium pump (SERCA2a), from 61.8% to 84.7%. In EDL muscles, overload induced only minor changes. Thus, this method of overload affected the soleus muscle in particular. The observed changes in the control of muscle contraction were significantly larger than the changes in typical myofibrillar properties that were observed. These results indicate that there is a temporal dissociation between the relative expression of MHCs and SERCAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号