首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Baker DA 《IUBMB life》2004,56(9):535-540
Completion of several malaria parasite genome sequences and advances in Plasmodium gene manipulation technology, will lead to significant advances in our knowledge of the biology of these organisms. Biochemical analysis of the cyclic nucleotide signalling pathways of P. falciparum has provided important information on malaria parasite development. The Plasmodium purine nucleotide cyclase enzymes have extremely unusual structures and the regulatory mechanisms controlling parasite enzyme activity are distinct from those operating on the analogous host molecules. Study of these enzymes could therefore lead to novel strategies for anti-malarial intervention in addition to providing unique insights into the intriguing biology of the parasite.  相似文献   

2.
Parasite genomes   总被引:2,自引:0,他引:2  
  相似文献   

3.
4.
5.
In the past few years, methods have been developed which allow the introduction of exogenous DNA into the human malaria parasite Plasmodium falciparum. This important technical advance known as parasite transfection, provides powerful new tools to study the function of Plasmodium proteins and their roles in biology and disease. Already it has allowed the analysis of promoter function and has been successfully applied to establish the role of particular molecules and/or mutations in the biology of this parasite. This review summarises the current state of the technology and how it has been applied to dissect the function of the P. falciparum genome.  相似文献   

6.
Sequences related to those near chromosome telomeres in the human malaria parasite, Plasmodium falciparum, were extremely unstable during a genetic cross between two different clonal genotypes. Many progeny of the heterologous cross displayed telomere-homologous restriction fragments found in neither parent. A significant number of the new fragments resulted from rearrangements at chromosome-internal locations which were bounded by more complex tracts of DNA sequence. The same instability was not seen to arise during an inbreeding cross, nor during mitotic replication of parasites. Thus, a form of genetic hypervariability results from molecular events which occur during meiotic reduction and is apparent only in a cross between heterologous strains of parasite. Since other sequences were entirely stable under the same conditions, it appears that chromosome-internal blocks of telomeric sequences in the P. falciparum genome may designate conditionally unstable chromosomal domains. We discuss some potential implications of these findings for the population biology of P. falciparum.  相似文献   

7.
In spite of the extraordinary progress in unravelling the genome of the Plasmodium falciparum parasite, many crucial aspects of its biology remain poorly understood. One largely neglected area is the mechanism of merozoite release from host red blood cells.  相似文献   

8.
9.
Homologous sequences of the acute RNA tumor virus oncogenes have been found to be highly conserved within vertebrates, insects and yeasts. In the present work, seven different oncogene DNA sequences have been used as probes to search for homologous sequences in the DNA of the protozoan Plasmodium falciparum. Both the v-fms v-Ha ras probes hybridized P. falciparum DNA. The oncogene study will allow an understanding of the biology of the parasite and particularly the host-parasite relationships which allow P. falciparum to develop, keeping the established harmony between the parasite and his host.  相似文献   

10.
Interpolated Markov models for eukaryotic gene finding.   总被引:21,自引:0,他引:21  
Computational gene finding research has emphasized the development of gene finders for bacterial and human DNA. This has left genome projects for some small eukaryotes without a system that addresses their needs. This paper reports on a new system, GlimmerM, that was developed to find genes in the malaria parasite Plasmodium falciparum. Because the gene density in P. falciparum is relatively high, the system design was based on a successful bacterial gene finder, Glimmer. The system was augmented with specially trained modules to find splice sites and was trained on all available data from the P. falciparum genome. Although a precise evaluation of its accuracy is impossible at this time, laboratory tests (using RT-PCR) on a small selection of predicted genes confirmed all of those predictions. With the rapid progress in sequencing the genome of P. falciparum, the availability of this new gene finder will greatly facilitate the annotation process.  相似文献   

11.
Plasmodium falciparum is the causative agent for the most lethal form of human malaria, killing millions annually. Genetic analyses of P. falciparum have been relatively limited due to the lack of robust techniques to manipulate this parasite. Development of transfection technologies and whole genome analyses have helped in understanding the complex biology of this parasite. Even with this wealth of information functional genomics approaches are still very limited in P. falciparum due to the cumbersome and inefficient methods of genetic manipulation. This review focuses on a recently developed, highly efficient method for transposon-based mutagenesis and transgene expression in P. falciparum that will allow functional genomics studies to be performed proficiently on this deadly malaria parasite. By using a piggyBac-based transposition system, multiple random integrations have been obtained into the genome of the parasite. This technique could hence be employed to set up several biological screens in this lethal protozoan parasite that may lead to identification of novel drug targets and vaccine candidates.  相似文献   

12.
The current knowledge on genomes of non-falciparum malaria species and the potential of model malaria parasites for functional analyses are reviewed and compared with those of the most pathogenic human parasite, Plasmodium falciparum. There are remarkable similarities in overall genome composition among the different species at the level of chromosome organisation and chromosome number, conserved order of individual genes, and even conserved functions of specific gene domains and regulatory control elements. With the initiative taken to sequence the genome of P. falciparum, a wealth of information is already becoming available to the scientific community. In order to exploit the biological information content of a complete genome sequence, simple storage of the bulk of sequence data will be inadequate. The requirement for functional analyses to determine the biological role of the open reading frames is commonly accepted and knowledge of the genomes of the animal model malaria species will facilitate these analyses. Detailed comparative genome information and sequencing of additional Plasmodium genomes will provide a deeper insight into the evolutionary history of the species, the biology of the parasite, and its interactions with the mammalian host and mosquito vector. Therefore, an extended and integrated approach will enhance our knowledge of malaria and will ultimately lead to a more rational approach that identifies and evaluates new targets for anti-malarial drug and vaccine development.  相似文献   

13.
Bioinformatics tools to aid gene and protein sequence analysis have become an integral part of biology in the post-genomic era. Release of the Plasmodium falciparum genome sequence has allowed biologists to define the gene and the predicted protein content as well as their sequences in the parasite. Using pI and molecular weight as characteristics unique to each protein, we have developed a bioinformatics tool to aid identification of proteins from Plasmodium falciparum. The tool makes use of a Virtual 2-DE generated by plotting all of the proteins from the Plasmodium database on a pI versus molecular weight scale. Proteins are identified by comparing the position of migration of desired protein spots from an experimental 2-DE and that on a virtual 2-DE. The procedure has been automated in the form of user-friendly software called "Plasmo2D". The tool can be downloaded from http://144.16.89.25/Plasmo2D.zip.  相似文献   

14.
15.
Apicomplexan species constitute a diverse group of parasitic protozoa, which are responsible for a wide range of diseases in many organisms. Despite differences in the diseases they cause, these parasites share an underlying biology, from the genetic controls used to differentiate through the complex parasite life cycle, to the basic biochemical pathways employed for intracellular survival, to the distinctive cell biology necessary for host cell attachment and invasion. Different parasites lend themselves to the study of different aspects of parasite biology: Eimeria for biochemical studies, Toxoplasma for molecular genetic and cell biological investigation, etc. The Plasmodium falciparum Genome Project contributes the first large-scale genomic sequence for an apicomplexan parasite. The Plasmodium Genome Database (http://PlasmoDB.org) has been designed to permit individual investigators to ask their own questions, even prior to formal release of the reference P. falciparum genome sequence. As a case in point, PlasmoDB has been exploited to identify metabolic pathways associated with the apicomplexan plastid, or 'apicoplast' - an essential organelle derived by secondary endosymbiosis of an alga, and retention of the algal plastid.  相似文献   

16.
Mu J  Seydel KB  Bates A  Su XZ 《Current Genomics》2010,11(4):279-286
With the completion and near completion of many malaria parasite genome-sequencing projects, efforts are now being directed to a better understanding of gene functions and to the discovery of vaccine and drug targets. Inter- and intraspecies comparisons of the parasite genomes will provide invaluable insights into parasite evolution, virulence, drug resistance, and immune invasion. Genome-wide searches for loci under various selection pressures may lead to discovery of genes conferring drug resistance or encoding for protective antigens. In addition, the Plasmodium falciparum genome sequence provides the basis for the development of various microarrays to monitor gene expression and to detect nucleotide substitution and deletion/amplification. Genome-wide profiling of the parasite proteome, chromatin modification, and nucleosome position also depend on availability of the parasite genome. In this brief review, we will highlight some recent advances and studies in characterizing gene function and related phenotype in P. falciparum that were made possible by the genome sequence, particularly the development of a genome-wide diversity map and various high-throughput genotyping methods for genome-wide association studies (GWAS).  相似文献   

17.
With the availability of complete genome sequences for a number of organisms, a major challenge has become to understand how chromatin and its epigenetic modifications regulate genome function. High-throughput microarray and sequencing technologies are being combined with biochemical and immunological enrichment methods to obtain genome-scale views of chromatin in a variety of organisms. The data pinpoint novel, genomic elements and expansive chromatin domains, and offer insight into the functions of histone modifications. In parallel, state-of-the-art imaging techniques are being used to investigate higher-order chromatin organization, and are beginning to bridge our understanding of chromatin biology with that of chromosome structure.  相似文献   

18.
Examination of nucleotide diversity in 106 mitochondrial genomes of the most geographically widespread human malaria parasite, Plasmodium vivax, revealed a level of diversity similar to, but slightly higher than, that seen in the virulent human malaria parasite Plasmodium falciparum. The pairwise distribution of nucleotide differences among mitochondrial genome sequences supported the hypothesis that both these parasites underwent ancient population expansions. We estimated the age of the most recent common ancestor (MRCA) of the mitochondrial genomes of both P. vivax and P. falciparum at around 200,000-300,000 years ago. This is close to the previous estimates of the time of the human mitochondrial MRCA and the origin of modern Homo sapiens, consistent with the hypothesis that both these Plasmodium species were parasites of the hominid lineage before the origin of modern H. sapiens and that their population expansion coincided with the population expansion of their host.  相似文献   

19.
Malaria has plagued humans throughout recorded history and results in the death of over 2 million people per year. The protozoan parasite Plasmodium falciparum causes the most severe form of malaria in humans. Chemotherapy has become one of the major control strategies for this parasite; however, the development of drug resistance to virtually all of the currently available drugs is causing a crisis in the use and deployment of these compounds for prophylaxis and treatment of this disease. The genome sequence of P. falciparum is providing the informational base for the use of whole-genome strategies such as bioinformatics, microarrays and genetic mapping. These approaches, together with the availability of a high-resolution genome linkage map consisting of hundreds of microsatellite markers and the advanced technologies of transfection and proteomics, will facilitate an integrated approach to address important biological questions. In this review we will discuss strategies to identify novel genes involved in the molecular mechanisms used by the parasite to circumvent the lethal effect of current chemotherapeutic agents.  相似文献   

20.
The lethal species of malaria parasite, Plasmodium falciparum, continues to exact a huge toll of mortality and morbidity, particularly in sub-Saharan Africa. Completion of the genome sequence of this organism and advances in proteomics and mass spectrometry have opened up unprecedented opportunities for understanding the complex biology of this parasite and how it responds to drug challenge and other interventions. This review describes recent progress that has been made in applying proteomics technology to this important pathogen and provides a look forward to likely future developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号