首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A re-evaluation of the mobility of double-stranded RNA on polyacrylamide gels over a molecular weight range of 0.46-6.3 . 10(6) was carried out using double-stranded RNAs of: bacteriophage ?6; virus like particles or mycoviruses of Penicillium chyrsogenum, Penicillium stoloniferum and Helminthosporium maydis, and reovirus type III. When the relative mobility on polyacrylamide gels was plotted as a function of log molecular weight, a smooth curve could be drawn which passed through all points. The implications of these findings to the determination of molecular weight of double-stranded RNA by polyacrylamide gel electrophoresis are discussed.  相似文献   

2.
Heuer DM  Saha S  Archer LA 《Biopolymers》2003,70(4):471-481
The electrophoretic migration of rigid rodlike DNA structures with well defined topologies has been investigated in polyacrylamide (PA) hydrogels prepared by copolymerization of acrylamide and N, N'-methylenebisacrylamide. Previous studies have reported structural and dynamic characteristics of linear and branched DNA during electrophoresis in PA gels using a variety of experimental parameters. However, a thorough investigation aimed at establishing specific relationships between topological features of rigid rodlike DNA structures and their electrophoretic behavior is still needed. In order to study these topological effects on mobility, an intensive examination of the electrophoretic mobility of small linear and starlike DNA was performed. A series of model DNA structures with well-defined branched topologies were synthesized with varying molecular parameters, such as number of arms surrounding the branch point and arm length. The electrophoretic mobility of these structures was then contrasted with a series of data obtained using linear DNA of comparable molecular size. When large DNA stars (M >/= 60 bp) were compared with linear DNA of identical molecular weight, the Ferguson plots were quite different. However, small DNA stars (24-32 bp) and linear analogues had identical Ferguson plots. This indicates that a different motional mode or greater interaction with the gel exists for the larger DNA stars. When the total molecular weight of the DNA stars was held constant and the number of arms varied, the Ferguson plots for all the stars were identical. Additionally, a critical pore size was reached when the ratio of linear DNA mobility to star DNA mobility increased dramatically. Thus, while the incorporation of a single branch point can produce a large reduction in mobility, above a critical molecular size, the incorporation of additional branch points does not appear to provide further reduction in mobility. This finding is consistent with the transport properties of large synthetic star polymers, where a large reduction in their diffusion coefficient is observed when a single branch is added. When additional arms are incorporated, large synthetic stars do not display an appreciable further reduction in diffusion coefficient. The effect of arm length on mobility for rigid rod DNA stars was also studied. For four-arm DNA stars, the mobility was found to scale as an exponential function of the arm length. Finally, a recently proposed phenomenological model was used to successfully fit the mobility data for linear rigid rod DNA at various concentrations of PA.  相似文献   

3.
Fragments comprising the 49 nucleotides from the 3'-end have been purified from 16S ribosomal RNA of wild-type Escherichia coli and from a kasugamycin-resistant mutant that specifically lacks dimethylation of two adjacent adenines near the 3'-terminus. These fragments, obtained after treatment of ribosomes in vitro with the bacteriocin cloacin DF13, were used to study the effect of the methyl groups on the temperature dependent unfolding of double-stranded regions. Both fragments contain at least 3 independent melting transitions, of which the one with the highest Tm corresponds with the unfolding of a nine-basepair long central hairpin. Dimethylation of the adenines in the loop of this hairpin lowers the melting temperature (Tm) by approximately 2 degrees C at 0.2 M NaCl and by about 5 degrees C at 0.15 M NaCl. It is suggested that m6(2)Am6(2)A is more antagonistic to loop formation that ApA and that the function of the methyl groups is to help to destabilize the 3'-terminal hairpin in 16S rRNA in order to facilitate intermolecular interactions.  相似文献   

4.
Hori  H.  Satow  Y. 《Hydrobiologia》1991,216(1):505-508
Using nucleotide sequences of 5S ribosomal RNAs from 2 hydrozoan jellyfishes, 3 scyphozoan jellyfishes and 2 sea anemones, a phylogenetic tree of Cnidaria has been constructed to elucidate the evolutionary relationships of radial and bilateral symmetries. The 3 classes of Cnidaria examined herein belong to one branch, which does not include other metazoan phyla such as the Platyhelminthes. The Hydrozoa (having radial symmetry without septa) and the Scyphozoa (having radial symmetry with septa) are more closely related to each other than to the Anthozoa (having bilateral symmetry with septa). In classical taxonomy, multicellular animals are considered to have evolved through organisms with radial symmetry (e.g., Cnidaria) to bilateral symmetry. Our results, however, indicate that the emergence of the Bilateria was earlier than that of the Radiata, suggesting (in opposition to Haeckel's view) that the radial symmetry of Cnidaria is an evolutionary dead end.  相似文献   

5.
If RNA is extracted from the ribosomes which had been isolated from frozen-thawed tissue of Galleria mellonella, the 28 S RNA, when heated or treated with urea, dissociates into seven different species of polynucleotide fragments. They were designated as R1, R2, R3, R4, R5, R6, and R7, whose molecular weights were estimated to be 1.15x10-6, 0.75x10-6, 0.55x10-6, 0.40x10-6, 0.30x10-6, 0.25x10-6, 0.20x10-6 daltons, respectively. It is likely that R1 and R5 arise from a single nick in original 38 S rRNA. Experiments with isolated R1 suggest that it is made up of a hydrogen-bonded complex of R2 and R4. R5 is a complex of R6 and an unidentified species, X. It is suggested that these fragments result from nicks which are introduced, secondarily, in the phosphodiester bonds by an endogenous endonuclease(s). Since the secondary nicks are limited in number and located in specific points of the molecule, it appears that the reaction is quite specific. It was also shown that the 28 S aphid RNA, which apparently lacks the primary nick, is susceptible to nicking.  相似文献   

6.
Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences   总被引:18,自引:0,他引:18  
A phylogenetic tree of most of the major groups of organisms has been constructed from the 352 5S ribosomal RNA sequences now available. The tree suggests that there are several major groups of eubacteria that diverged during the early stages of their evolution. Metabacteria (= archaebacteria) and eukaryotes separated after the emergence of eubacteria. Among eukaryotes, red algae emerged first; and, later, thraustochytrids (a Proctista group), ascomycetes (yeast), green plants (green algae and land plants), "yellow algae" (brown algae, diatoms, and chrysophyte algae), basidiomycetes (mushrooms and rusts), slime- and water molds, various protozoans, and animals emerged, approximately in that order. Three major types of photosynthetic eukaryotes--i.e., red algae (= Chlorophyll a group), green plants (Chl. a + b group) and yellow algae (Chl. a + c)--are remotely related to one another. Other photosynthetic unicellular protozoans--such as Cyanophora (Chl. a), Euglenophyta (Chl. a + b), Cryptophyta (Chl. a + c), and Dinophyta (Chl. a + c)--seem to have separated shortly after the emergence of the yellow algae.   相似文献   

7.
The outer membrane proteins of Escherichia coli can be resolved by polyacrylamide gel electrophoresis in the presence of anionic detergents. Factors such as the choice of detergent and buffer system and the presence of urea in the separation gel are all shown to affect the charge and/or the configuration of the detergent-protein complexes and will affect the relative migration of these complexes to different extents. The procedures described in this paper may be of use in the determination of the relatedness of the proteins from the same or different strains. In addition, detailed examinations of the effects of these different parameters and the effect of changes in acrylamide concentrations may be useful in the detection of unusual characteristics which may indicate the presence of posttranslational modification.  相似文献   

8.
A Teske  P Sigalevich  Y Cohen    G Muyzer 《Applied microbiology》1996,62(11):4210-4215
Molecular information about the bacterial composition of a coculture capable of sulfate reduction after exposure to oxic and microoxic conditions was used to identify and subsequently to isolate the components of the mixture in pure culture. PCR amplification of 16S ribosomal DNA fragments from the coculture, analyzed by denaturing gradient gel electrophoresis, resulted in two distinct 16S ribosomal DNA bands, indicating two different bacterial components. Sequencing showed that the bands were derived from a Desulfovibrio strain and an Arcobacter strain. Since the phylogenetic positions of bacteria are often consistent with their physiological properties and culture requirements, molecular identification of the two components of this coculture allowed the design of specific culture conditions to separate and isolate both strains in pure culture. This approach facilitates the combined molecular and physiological analysis of mixed cultures and microbial communities.  相似文献   

9.
A novel alternative conformation, which involves an interaction between the 5' terminal and 915 regions (E. coli numbering), is proposed after a screening of compiled sequences of small subunit ribosomal RNAs. This conformation contains a pseudoknot helix between residues 12-16 and 911-915, and its formation requires the partial melting of the 5' terminal helix and the disruption of the 17-19/916-918 pseudoknot helix of the classical 16 S rRNA secondary structure. The alternate pseudoknot helix is proximal to the binding site of streptomycin and various mutations in rRNA which confer resistance to streptomycin have been located in each strand of the proposed helix. It is suggested that the presence of streptomycin favours the shift towards the alternate conformation, thereby stabilizing drug binding. Mutations which destabilize the novel pseudoknot helix would restrict the response to streptomycin.  相似文献   

10.
A gel sequencing method has been applied to two 5' end-labelled fragments of the 16S ribosomal RNA from E. coli. The procedure involves partial enzymatic hydrolysis by ribonucleases T1, U2 or A, in order to generate series of end-labelled subfragments terminating in guanine, adenine, or pyrimidine residues, respectively. The two fragments concerned were approximately 75 and 90 nucleotides in length, and both arose from the 3' region of the 16S RNA. The sequences deduced are compared with the published sequence of 16S RNA, and contribute information to the final ordering of the ribonuclease T1 oligonucleotides in the latter, as well as revealing some probable errors.  相似文献   

11.
A method for electrophoretic analysis of RNA under fully denaturing conditions on exponential gradient polyacrylamide gels is described. Full denaturation, and strand separation of DNA - RNA hybrids and double-stranded RNA is obtained in dry formamide only if electrophoresis is carried out at 45 degrees and 55 degrees C, respectively. In such conditions, the effects of secondary structure of RNA, important in aqueous medium, are suppressed and a linear correlation is obtained between the logarithm of the molecular weight of an RNA and its final position in the gel over the entire molecular weight range of 10(4) - 10(7). Based on absolute molecular weight standards, obtained from sequenced rRNA of Escherichia coli and tRNA and extrapolating to higher molecular weights the size of animal cell was reexamined. Precursor tRNA from HeLa cells migrates according to a molecular weight of 4.1 x 10(6). Nascent precursor mRNA has molecular weights of up to 5 x 10(6) in the case of duck erythroblasts and of up to 10(7) in HeLa cells. This seems to represent the largest size of non-viral animal-cell RNA molecules.  相似文献   

12.
The effect of the presence or absence of the methylgroups of the m2(6)Am2(6)A sequence near the 3' end of 16S rRNA of Escherichia coli on the interaction of the ribosomal subunits has been studied, using wild-type (methylated) and mutant (unmethylated) ribosomes. Subunit exchange experiments and competitive association experiments show a strong preference of the 50S subunit for association with methylated 30S subunits. The results indicate that the equilibrium constant of the reaction 70S in equilibrium with 30S + 50S is dependent on the methylgroups; mutant 30S.50S couples are less stable than wild-type 30S.50S couples. It is postulated that the methylgroups also stimulate the interaction between 30S subunits and initiation factor IF-3.  相似文献   

13.
Specific fragments of the 16 S ribosomal RNA of Escherichia coli have been isolated and tested for their ability to interact with proteins of the 30 S ribosomal subunit. The 12 S RNA, a 900-nucleotide fragment derived from the 5′-terminal portion of the 16 S RNA, was shown to form specific complexes with proteins S4, S8, S15, and S20. The stoichiometry of binding at saturation was determined in each case. Interaction between the 12 S RNA and protein fraction S16S17 was detected in the presence of S4, S8, S15 and S20; only these proteins were able to bind to this fragment, even when all 21 proteins of the 30 S subunit were added to the reaction mixture. Protein S4 also interacted specifically with the 9 S RNA, a fragment of 500 nucleotides that corresponds to the 5′-terminal third of the 16 S RNA, and protein S15 bound independently to the 4 S RNA, a fragment containing 140 nucleotides situated toward the middle of the RNA molecule. None of the proteins interacted with the 600-nucleotide 8 S fragment that arose from the 3′-end of the 16 S RNA.When the 16 S RNA was incubated with an unfractionated mixture of 30 S subunit proteins at 0 °C, 10 to 12 of the proteins interacted with the ribosomal RNA to form the reconstitution intermediate (RI) particle. Limited hydrolysis of this particle with T1 ribonuclease yielded 14 S and 8 S subparticles whose RNA components were indistinguishable from the 12 S and 8 S RNAs isolated from digests of free 16 S RNA. The 14 S subparticle contained proteins S6 and S18 in addition to the RNA-binding proteins S4, S8, S15, S20 and S16S17. The 8 S subparticle contained proteins S7, S9, S13 and S19. These findings serve to localize the sites at which proteins incapable of independent interaction with 16 S RNA are fixed during the early stages of 30 S subunit assembly.  相似文献   

14.
The mechanism of 16 S ribosomal RNA folding into its compact form in the native 30 S ribosomal subunit of Escherichia coli was studied by scanning transmission electron microscopy and circular dichroism spectroscopy. This approach made it possible to visualize and quantitatively analyze the conformational changes induced in 16 S rRNA under various ionic conditions and to characterize the interactions of ribosomal proteins S4, S8, S15, S20, S17 and S7, the six proteins known to bind to 16 S rRNA in the initial assembly steps. 16 S rRNA and the reconstituted RNA-protein core particles were characterized by their mass, morphology, radii of gyration (RG), and the extent and stability of 16 S rRNA secondary structure. The stepwise binding of S4, S8 and S15 led to a corresponding increase of mass and was accompanied by increased folding of 16 S rRNA in the core particles, as evident from the electron micrographs and from the decrease of RG values from 114 A and 91 A. Although the binding of S20, S17 and S7 continued the trend of mass increase, the RG values of these core particles showed a variable trend. While there was a slight increase in the RG value of the S20 core particles to 94 A, the RG value remained unchanged (94 A) with the further addition of S17. With subsequent addition of S7 to the core particles, the RG values showed an increase to 108 A. Association with S7 led to the formation of a globular mass cluster with a diameter of about 115 A and a mass of about 300 kDa. The rest of the mass (about 330 kDa) remained loosely coiled, giving the core particle a "medusa-like" appearance. Morphology of the 16 S rRNA and 16 S rRNA-protein core particles, even those with all six proteins, does not resemble the native 30 S subunit, contrary to what has been reported by others. The circular dichroism spectra of the 16 S rRNA-protein complexes and of free 16 S rRNA indicate a similarity of RNA secondary structure in the core particles with the first four proteins, S4, S8, S15, S20. The circular dichroism melting profiles of these core particles show only insignificant variations, implying no obvious changes in the distribution or the stability of the helical segments of 16 S rRNA. However, subsequent binding of proteins S17 and S7 affected both the extent and the thermal stability of 16 S rRNA secondary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The digestion of E. coli 16S RNA with a single-strand-specific nuclease produced two fractions separable by gel filtration. One fraction was small oligonucleotides, the other, comprising 67.5% of the total RNA, was highly structured double helical fragments of mol. wt. 7,600. There are thus about 44 helical loops of average size corresponding to 12 base pairs in each 16S RNA. 10% of the RNA could be digested from native 30S subunits. Nuclease attack was primarily in the intraloop single-stranded region but two major sites of attack were located in the interloop single-stranded regions. Nuclease digestion of unfolded subunits produced three classes of fragments, two of which, comprising 80% of the total RNA, were identical to fragments from 16S RNA. The third, consisting of 20% RNA, together with an equal weight of peotein, was a resistant core (sedimentation coefficient 7S).  相似文献   

16.
The conformation of Escherichia coli 5 S rRNA was investigated using chemical and enzymatic probes. The four bases were monitored at one of their Watson-Crick positions with dimethylsulfate (at C(N-3) and A(N-1], with a carbodiimide derivative (at G(N-1) and U(N-3] and with kethoxal (at G(N-1, N-2]. Position N-7 of purine was probed with diethylpyrocarbonate (at A(N-7] and dimethylsulfate (at G(N-7]. Double-stranded or stacked regions were tested with RNase V1 and unpaired guanine residues with RNase T1. We also used lead(II) that has a preferential affinity for interhelical and loop regions and a high sensitivity for flexible regions. Particular care was taken to use uniform conditions of salt, magnesium, pH and temperature for the different enzymatic chemical probes. Derived from these experimental data, a three dimensional model of the 5 S rRNA was built using computer modeling which integrates stereochemical constraints and phylogenetic data. The three domains of 5 S rRNA secondary structure fold into a Y-shaped structure that does not accommodate long-range tertiary interactions between domains. The three domains have distinct structural and dynamic features as revealed by the chemical reactivity and the lead(II)-induced hydrolysis: domain 2 (loop B/helix III/loop C) displays a rather weak structure and possesses dynamic properties while domain 3 (helix V/region E/helix IV/loop D) adopts a highly structured and overall helical conformation. Conserved nucleotides are not crucial for the tertiary folding but maintain an intrinsic structure in the loop regions, especially via non-canonical pairing (A.G, G.U, G.G, A.C, C.C), which can close the loops in a highly specific fashion. In particular, nucleotides in the large external loop C fold into an organized conformation leading to the formation of a five-membered loop motif. Finally, nucleotides at the hinge region of the Y-shape are involved in a precise array of hydrogen bonds based on a triple interaction between U14, G69 and G107 stabilizing the quasi-colinearity of helices II and V. The proposed tertiary model is consistent with the localization of the ribosomal protein binding sites and possesses strong analogy with the model proposed for Xenopus laevis 5 S rRNA, indicating that the Y-shape model can be generalized to all 5 S rRNAs.  相似文献   

17.
32P-labeled (in vivo) phiX174 RFI DNA was restricted by Hinc II. Three aliquots of the same digest: a) nondenatured, b) heat denatured, and c) denatured by 5 mM Me-HgOH were analyzed on 3-15% acrylamide gel gradients or on 3% gels with reduced N,N'-methylene-bis-acrylamide. The autoradiography of the gels showed that the nondenatured sample migrates two times faster than the denatured samples. After denaturation each original fragment appeared as a doublet. Using in vitro synthesized RFI DNA labeled only in negative strand with 32P we could identify the position of the negative strand in each denatured doublet. The single strand DNA fragments could be recovered from the gel slices on a semi-preparative scale by electrophoresis into dialysis tubing.  相似文献   

18.
Partial nucleotide sequence of 16S ribosomal RNA from E. coli   总被引:10,自引:0,他引:10  
  相似文献   

19.
The interaction between the ribosomal protein S15 and its binding sites in the 16S RNA was examined from two points of view. First, the isolated protein S15 was studied by comparing NMR conformer sets, available in the PDB and recalculated using the CNS-ARIA protocol. Molecular dynamics (MD) trajectories were then recorded starting from a conformer of each set. The recalculation of the S15 NMR structure, as well as the recording of MD trajectories, reveals that several orientations of the N-terminal alpha-helix alpha1 with respect to the structure core are populated. MD trajectories of the complex between the ribosomal protein S15 and RNA were also recorded in the presence and absence of Mg(2+) ions. The Mg(2+) ions are hexacoordinated by water and RNA oxygens. The coordination spheres mainly interact with the RNA phosphodiester backbone, reducing the RNA mobility and inducing electrostatic screening. When the Mg(2+) ions are removed, the internal mobility of the RNA and of the protein increases at the interaction interface close to the RNA G-U/G-C motif as a result of a gap between the phosphate groups in the UUCG capping tetraloop and of the disruption of S15-RNA hydrogen bonds in that region. On the other hand, several S15-RNA hydrogen bonds are reinforced, and water bridges appear between the three-way junction region and S15. The network of hydrogen bonds observed in the loop between alpha1 and alpha2 is consequently reorganized. In the absence of Mg(2+), this network has the same pattern as the network observed in the isolated protein, where the helix alpha1 is mobile with respect to the protein core. The presence of Mg(2+) ions may thus play a role in stabilizing the orientation of the helix alpha1 of S15.  相似文献   

20.
Probing the structure of 16 S ribosomal RNA from Bacillus brevis   总被引:9,自引:0,他引:9  
A majority (approximately 89%) of the nucleotide sequence of Bacillus brevis 16 S rRNA has been determined by a combination of RNA sequencing methods. Several experimental approaches have been used to probe its structure, including (a) partial RNase digestion of 30 S ribosomal subunits, followed by two-dimensional native/denatured gel electrophoresis, in which base-paired fragments were directly identified; (b) identification of positions susceptible to cleavage by RNase A and RNase T1 in 30 S subunits; (c) sites of attack by cobra venom RNase on naked 16 S rRNA; and (d) nucleotides susceptible to attack by bisulfite in 16 S rRNA. These data are discussed with respect to a secondary structure model for B. brevis 16 S rRNA derived by comparative sequence analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号