首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proton-translocating ATPase regulates pH of the bacterial cytoplasm   总被引:29,自引:0,他引:29  
Regulatory mechanisms of cytoplasmic pH in Streptococcus faecalis with no respiratory chain were investigated. In a mutant defective in cytoplasmic alkalization conducted by a proton-translocating ATPase (H+-ATPase), the cytoplasmic pH is approximately 0.4 to 0.5 pH units lower than the medium pH, at pH 5.5 to 9.0. The cytoplasmic pH of the wild-type strain was always higher than that of the mutant at a pH below 8 and was the same as that of the mutant at an alkaline pH over 8. Thus, the cytoplasmic pH is regulated only by the cytoplasmic alkalization, and there is no regulation at alkaline pH in S. faecalis. A generation of the protonmotive force conducted by the H+-ATPase depended on the cytoplasmic pH rather than the medium pH, and the generation decreased rapidly when the cytoplasmic pH was increased over 7.7. The decrease at alkaline pH was not caused by increases in the rate of proton influx. These results suggest that cytoplasmic alkalization is diminished when alkaline pH of the cytoplasm is over 7.7, because of a low activity of proton extrusion by the H+-ATPase, and consequently, the cytoplasmic pH is regulated at about 7.7. The cytoplasmic pH was regulated at a high level in cells that had a high level of H+-ATPase. I conclude that in S. faecalis, the cytoplasmic pH is regulated by H+-ATPase.  相似文献   

2.
Proton motive force is not obligatory for growth of Escherichia coli.   总被引:13,自引:6,他引:7       下载免费PDF全文
When 50 microM carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), a protonophore, was added to growth medium containing glucose at pH 7.5, Escherichia coli TK1001 (trkD1 kdpABC5) started exponential growth after 30 min; the generation time was 70 min at 37 degrees C. Strain AS1 (acrA), another strain derived from E. coli K-12, also grew in the presence of 50 microM CCCP under the same conditions, except that the lag period was ca. 3 h. When this strain was grown in the presence of 50 microM CCCP and then transferred to fresh medium containing 50 microM CCCP, cells grew without any lag. Neither a membrane potential nor a pH gradient was detected in strain AS1 cells growing in the presence of CCCP. When either succinate or lactate was substituted for glucose, these strains did not grow in the presence of 50 microM CCCP. Thus, it is suggested that E. coli can grow in the absence of a proton motive force when glucose is used as an energy source at pH 7.5.  相似文献   

3.
It is generally accepted for Escherichia coli that (i) the level of OmpC increases with increased osmolarity when cells are growing in neutral and alkaline media, whereas the level of OmpF decreases at high osmolarity, and that (ii) the two-component system composed of OmpR (regulator) and EnvZ (sensor) regulates porin expression. In this study, we found that OmpC was expressed at low osmolarity in medium of pH below 6 and that the expression was repressed when medium osmolarity was increased. In contrast, the expression of ompF at acidic pH was essentially the same as that at alkaline pH. Neither OmpC nor OmpF was detectable in an ompR mutant at both acid and alkaline pH values. However, OmpC and OmpF were well expressed at acid pH in a mutant envZ strain, and their expression was regulated by medium osmolarity. Thus, it appears that E. coli has a different mechanism for porin expression at acid pH. A mutant deficient in ompR grew slower than its parent strain in low-osmolarity medium at acid pH (below 5.5). The same growth diminution was observed when ompC and ompF were deleted, suggesting that both OmpF and OmpC are required for optimal growth under hypoosmosis at acid pH.  相似文献   

4.
Summary Endogenous pH profiles were measured around single fertilized eggs of the brown algaPelvetia during the earliest stages of development. Profiles were constructed by measuring the pH near the cell surface at several positions using a pH sensitive microelectrode. Transcellular pH differences in the medium surrounding zygotes were detected soon after fertilization, as the developmental axis was being formed. The future rhizoid end of the cell was relatively alkaline and the presumptive thallus was acidic. At germination and throughout the first 5 d of embryogenesis, the apex of the elongating rhizoid was alkaline with respect to more distal regions. However, conditions that dissipated or reversed this extracellular pH gradient had little or no effect on polarization or growth, indicating that the gradient was not essential for early development.Inhibition of respiratory electron transport by cyanide and antimycin A eliminated the pH gradient, while uncouplers of oxidative phosphorylation [2,4-dinitrophenol (DNP) and carbonylcyanide m-chlorophenylhydrazone (CCCP)] stimulated acidification of the thallus regions. Proton ATPase inhibitors had no effect. Acidification, therefore, is not generated by ATP-dependent proton pumps in the plasma membrane, and instead probably reflects secretion of metabolic acids. Localized metabolism may establish an internal pH gradient that controls regional differentiation, and we are presently investigating this possibility.Abbreviations ASW artificial seawater - CCCP carbonylcyanide m-chlorophenylhydrazone - CD cytochalasin D - DNP 2,4-dinitrophenol  相似文献   

5.
Potassium extrusion in bacteria is thought to play a role in the regulation of the cytoplasmic pH; in several organisms, it has been ascribed to secondary antiport of K+ for protons. Streptococcus faecalis exhibited a distinctive pattern: potassium extrusion occurred only when the cytoplasmic pH was alkaline and required the generation of ATP. The key observation is that glycolyzing cells suspended in an alkaline medium extruded K+, even against a K+ concentration gradient, provided the medium contained a weak permeant base (e.g. diethanolamine or methylamine). The amines render the cytoplasmic pH alkaline; when conditions were arranged to keep the cytoplasm neutral, no K+ extrusion was seen. Potassium extrusion required the presence of either glucose or arginine and was unaffected by protonophores and by inhibition of the F1Fo-ATPase. When the medium contained [14C]methylamine, the cells accumulated the base to an extent stoichiometrically equivalent to the K+ lost. Concurrently, the cytoplasmic pH fell from 8.8 to 7.6, at which point K+ extrusion ceased. The results suggest that K+ extrusion is due to an ATP-driven transport system that expels K+ by exchange for H+ and is active only at alkaline cytoplasmic pH.  相似文献   

6.
The Escherichia coli mutant NM81, which is deficient in the nhaA gene for the sodium/proton antiporter, still has a sodium ion extrusion activity because of a second antiporter encoded by nhaB (E. Padan, N. Maisler, D. Taglicht, R. Karpel, and S. Schuldiner, J. Biol. Chem. 264:20297-20302, 1989). By chance, we have found that E. coli pop6810 already contains a mutation affecting the sodium ion circulation, probably in or near nhaB, and that its delta nhaA mutant, designated RS1, has no sodium ion extrusion activity at alkaline pH. The growth of RS1 was inhibited completely by 0.1 M sodium, whereas growth inhibition of NM81 was observed only at sodium concentrations greater than 0.2 M. RS1 grew at a normal rate in an alkaline medium containing a low sodium concentration. Furthermore, RS1 grew with a negligible proton motive force in the alkaline medium containing carbonyl cyanide m-chlorophenylhydrazone. The transport activities for proline and serine were not impaired in RS1, suggesting that these transport systems could be driven by the proton motive force at alkaline pH. These findings led us to conclude that the operation of the sodium/proton antiporter is not essential for growth at alkaline pH but that the antiporter is required for maintaining a low internal sodium concentration when the growth medium contains a high concentration of these ions.  相似文献   

7.
Amplification of the Na+-ATPase of Streptococcus faecalis at alkaline pH   总被引:1,自引:0,他引:1  
Y Kakinuma  K Igarashi 《FEBS letters》1990,261(1):135-138
The Na+-ATPase activity of Streptococcus faecalis was influenced by the medium pH. Activities of the protonophore-resistant Na+ extrusion and the KtrII (active K+ uptake by the Na+-ATPase) were maximal in the cells grown at pH 9.5, and were minimal in those grown at pH 6.0. In the cells grown at pH 7.5, they were moderately observed. The Na+-stimulated ATPase activity of the cells grown at pH 9.5 was about 4-fold higher than that of the cells grown at pH 6.0. Thus, amplification of the Na+-ATPase is remarkable at alkaline pH in this organism, possibly by an increase of the cytoplasmic Na+ level as a signal.  相似文献   

8.
9.
The growth of Streptococcus faecalis at high pH was significantly stimulated by carbonate. In the absence of added carbonate the cells were unable to grow at a pH above 9.5, but in media containing 50 mM HCO3- they grew even at pH 10.5. Both rate and yield of growth at pH 9.5 were significantly stimulated by as little as 5 mM carbonate. The cytoplasmic pH in growing cells was maintained at about 7.8 to 8.2, whereas the medium pH ranged from 8.4 to 9.5. Nigericin and gramicidin D, ionophores which conduct protons, blocked growth at pH 9.5 but not at pH 7.5. These results indicate that lowering of the cytoplasmic pH is essential for the growth of this organism at high pH.  相似文献   

10.
11.
The L-form NC7, derived from Escherichia coli K12, grew in a complex medium containing 0.2 M-CaCl2 as osmotic stabilizer, but not at pH values above 7.8. The cessation of growth at alkaline pH was not due to cell death. In complex media containing K+ or Na+, the L-form grew ove a wide pH range. Growth at alkaline pH was inhibited by 1 mM-amiloride, indicating that Na+/H+ antiport activity was required for growth at alkaline pH. The internal pH (pHi) of the L-form in media containing K+, Na+ or Ca2+ was constant at about 7.8 to 8.0 at external pH (pHo) values of 7.2 and 8.2. The rates of O2 consumption by intact cells, lactate oxidation by membrane vesicles from cells grown in Ca(2+)-containing medium, and cell division were all strongly repressed under alkaline conditions.  相似文献   

12.
Carbonylcyanide m-chlorophenylhydrazone (CCCP) or nigericin induced translocation of H+ In the dark across the cell membrane of blue-green algae Plectonema boryanum and Anacystis nidulans. The direction of the H+ flux depended on the pH of the suspending medium. At acidic pH, an influx of H+ and at alkaline pH an efflux of H+ were observed. It is suggested that the influx takes place at pH'S higher than the "internal" pH and the efflux at pH's lower than that. The internal pH was estimated to be 7.4+/-0.2 for Plectonema boryanum and 7.5+/-0.1 for Anacystis nidulans. Similar H+ changes due to CCP were observed under illumination, where the light induced efflux of H+ was limited by the counter-flux of cations. The internal pH of cells in the light, estimated from the pH-dependent reversion in the rate of the H+ change, was about 8.5.  相似文献   

13.
Escherichia coli batch cultures were grown under aerobic and anaerobic conditions on glucose with the substrate addition at pH 7.0. The cultures accumulated acetate in the medium at concentrations sufficient to inhibit the growth. This inhibitory effect of acetate was mediated apparently via its action on the intracellular pH. The inhibition of E. coli growth by acetate increased when the redox proton pump was switched off in the course of transition from aerobiosis to anaerobiosis and when the regulation of K+ fluxes was disordered in the presence of valinomycin. H+-ATPase was not essentially involved in maintaining the high rate of E. coli growth in the presence of acetate under aerobic conditions. If the activity of H+-ATPase was inhibited under anaerobic conditions at pH 7.0, the growth ceased after the dissipation of ionic gradients on the membrane. When CCCP was added under aerobic conditions, the growth did not stop at once if the medium had a pH of 7.6, but ceased immediately at pHout 7.0 in the glucose-salt medium.  相似文献   

14.
It was reported that NhaA, one of sodium/proton antiporters in Escherichia coli, was expressed at alkaline pH [J. Biol. Chem. 266 (1991) 21753]. In disagreement with their results, expression of an nhaA-lacZ fusion gene was found to be very low in an E. coli strain derived from MC4100 within the wide pH range from 5 to 9. When nhaB was deleted, the fusion gene was expressed at pH values below 8, while the expression was observed at alkaline pH after chaA was deleted. The internal level of sodium ions was increased by deletion of nhaA in strains deficient in nhaB and chaA at low and high pH values, respectively. These results suggested that nhaA is induced only when a low level of internal sodium ions is not kept by NhaB and ChaA. Strains used in the previous study may have low active ChaA.  相似文献   

15.
We have isolated two acid-sensitive mutants of Streptococcus faecalis (ATCC 9790), designated AS13 and AS25, which grew at pH 7.5 but not at pH below 6.0. The ionophore gramicidin D, which collapsed the pH gradient between the cytoplasm and the medium, had little effect on the growth of these mutants, indicating that growing cells maintain only a small pH gradient. In the presence of gramicidin D the growth rates of the parent and mutant strains were identical over a range of pH values. When glucose was added to a cell suspension at pH 6.4, the parent strain generated a pH gradient of 1.0 unit, interior alkaline; AS13 generated a pH gradient of only 0.5 units, and AS25 generated no measurable pH gradient. The proton permeability of the mutant strains was the same as that of the parent strain. These results suggest that a cytoplasmic pH of around 7.5 is required for the growth of the cells and that the mutant strains are unable to establish a neutral cytoplasmic pH in acidic medium because of damage to the regulatory system of the cytoplasmic pH. Mutant strains also have a reduced capacity to extrude protons and take up potassium. Therefore, it is likely that these cation transport systems are involved in the regulation of cytoplasmic pH.  相似文献   

16.
In the present study, we measured the accumulation of glutamate after hyperosmotic shock in Escherichia coli growing in synthetic medium. The accumulation was high in the medium containing sucrose at a pH above 8 and decreased with decreases in the medium pH. The same results were obtained when the hyperosmotic shock was carried out with sodium chloride. The internal level of potassium ions in cells growing at a high pH was higher than that in cells growing in a neutral medium. A mutant deficient in transport systems for potassium ions accumulated glutamate upon hyperosmotic stress at a high pH without a significant increase in the internal level of potassium ions. When the medium osmolarity was moderate at a pH below 8, E. coli accumulated gamma-aminobutyrate and the accumulation of glutamate was low. These data suggest that E. coli uses different osmolytes for hyperosmotic adaptation at different environmental pHs.  相似文献   

17.
Ohyama et al. previously isolated Escherichia coli mutant RS1, which had a negligible activity for sodium ion extrusion at alkaline pH (T. Ohyama, R. Imaizumi, K. Igarashi, and H. Kobayashi, J. Bacteriol. 174:7743-7749, 1992). Our present study showed that the mutation of RS1 was compensated for by a cloned chaA gene. It has been proposed that sodium ion extrusion by ChaA is prevented under physiological conditions (D. M. Ivey, A. A. Guffanti, J. Zemsky, E. Pinner, R. Karpel, E. Padan, S. Schuldiner, and T. A. Krulwich, J. Biol. Chem. 268:11296-11303, 1993). In order to clarify the physiological role of chaA in sodium ion circulation at alkaline pH, we constructed a delta chaA mutant. The resultant mutant, TO112, deficient in both nhaA and chaA, was unable to grow at pH 8.5 in medium containing 0.1 M sodium chloride and had negligible sodium ion extrusion activity. However, TO112 grew at pH 7.0 in medium containing 0.4 M sodium chloride. Sodium ions were extruded from TO112 cells at neutral pH. The extrusion activity at pH 7.5 was greatly reduced by the deletion of nhaB. These data demonstrate that the activity of nhaB is low at high pH and that ChaA extrudes sodium ions at alkaline pH. The uptake of calcium ions by everted membrane vesicles prepared from the delta chaA mutant TO110 was 60% of the activity observed in the vesicles of the wild-type strain at pH 8.5, but the activity at neutral pH was not reduced by the deletion of chaA. Therefore, it was also suggested that ChaA plays a role in calcium ion circulation at alkaline pH.  相似文献   

18.
The internal pH value (pHi) of the long-slender bloodstream form of Trypanosoma brucei was estimated from the distribution of 14C-labeled 5,5-dimethyl-2,4-oxazolidinedione or 14C-labeled methyl amine between the intracellular space of the cells and the medium. The pHi of T. brucei remained relatively constant at 7.0-7.2 throughout an extracellular pH (pHo) range of 6.0-8.0. The maintenance of an internal pH more acidic than the environment appears to be a unique feature. Preincubation of T. brucei with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or CCCP + valinomycin had no appreciable effect on the delta pH across the T. brucei membrane when the external pH was 8.0. However, when the external pH was 6.0, CCCP abolished the observed delta pH. Nigericin significantly dissipated the delta pH across the T. brucei membrane at all pHo values. These data suggest that under physiological conditions, the maintenance of a delta pH across the bloodstream-form T. brucei membrane may be by a mechanism other than an energy-dependent gradient, whereas an energy-dependent pump may be needed for maintaining the pHi in an acidic environment. The electrical potential (delta psi) across the trypanosomal plasma membrane was also estimated using the lipophilic cation, [3H]tetraphenyl-phosphonium bromide. It appears dependent on both the external pH and the external salt conditions. Under ionic conditions similar to the host bloodstream, it ranges from -76 to -160 mV over an external pH range of 6.0 to 8.0, with an estimated value of -155.5 +/- 0.7 at the physiological pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Intracellular pH homeostasis in the filamentous fungus Aspergillus niger was measured in real time by 31P NMR during perfusion in the NMR tube of fungal biomass immobilized in Ca2+-alginate beads. The fungus maintained constant cytoplasmic pH (pH(cyt)) and vacuolar pH (pH(vac)) values of 7.6 and 6.2, respectively, when the extracellular pH (pH(ex)) was varied between 1.5 and 7.0 in the presence of citrate. Intracellular metabolism did not collapse until a Delta pH over the cytoplasmic membrane of 6.6-6.7 was reached (pH(ex) 0.7-0.8). Maintenance of these large pH differences was possible without increased respiration compared to pH(ex) 5.8. Perfusion in the presence of various hexoses and pentoses (pH(ex) 5.8) revealed that the magnitude of Delta pH values over the cytoplasmic and vacuolar membrane could be linked to the carbon catabolite repressing properties of the carbon source. Also, larger Delta pH values coincided with a higher degree of respiration and increased accumulation of polyphosphate. Addition of protonophore (carbonyl cyanide m-chlorophenylhydrazone, CCCP) to the perfusion buffer led to decreased ATP levels, increased respiration and a partial (1 microm CCCP), transient (2 microm CCCP) or permanent (10 microm CCCP) collapse of the vacuolar membrane Delta pH. Nonlethal levels of the metabolic inhibitor azide (N3-, 0.1 mm) caused a transient decrease in pH(cyt) that was closely paralleled by a transient vacuolar acidification. Vacuolar H+ influx in response to cytoplasmic acidification, also observed during extreme medium acidification, indicates a role in pH homeostasis for this organelle. Finally, 31P NMR spectra of citric acid producing A. niger mycelium showed that despite a combination of low pH(ex) (1.8) and a high acid-secreting capacity, pH(cyt) and pH(vac) values were still well maintained (pH 7.5 and 6.4, respectively).  相似文献   

20.
It has been reported that Escherichia coli is able to grow in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP) when ATP is produced by glycolysis (N. Kinoshita et al., J. Bacteriol. 160:1074-1077, 1984). We investigated the effect of CCCP on the osmotic adaptation of E. coli growing with glucose. When E. coli growing in rich medium containing CCCP was transferred to medium containing sucrose, its growth stopped for a while and then started again. This lag time was negligible in the absence of CCCP. The same results were obtained when the osmolarity was increased by N-methylglucamine-maleic acid. In addition to adapting itself to the hyperosmotic rich medium, E. coli adapted itself to hyperosmolarity in a minimal medium containing CCCP, again with a lag time. Hyperosmotic shock decreased the internal level of potassium ion rather than causing the accumulation of external potassium ion in the presence of CCCP. The internal amount of glutamic acid increased in cells growing in hyperosmotic medium in the presence and absence of CCCP. Large elevations in levels of other amino acids were not observed in the cells adapted to hyperosmolarity. Trehalose was detected only in hyperosmosis-stressed cells in the presence and absence of CCCP. These results suggest that E. coli can adapt to changes in the environmental osmolarity with a negligible accumulation of osmolytes from the external milieu but that the accumulation may promote the adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号