首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of pH, acetimidate concentration, temperature, and reaction time of methyl acetimidate with sperm whale myoglobulin have been assessed. Reaction at pH 9.8 and 15 degrees C for 30 min with a sixfold excess of methyl acetimidate relative to each amino group yielded six acetimidomyoglobin derivatives which were separated and purified. Reaction with tetrahydrophthalic anhydride revealed the number of amino groups that remained unreacted in each separated component and made possible further subractionation. Modification at the NH2 terminus was quantitated by automated stepwise Edman degradation. The acetimidyl and tetrahydrophthalyl groups, were readily removable. The potentiometric titration of three of the completely deprotected components showed identity with the parent untreated sperm whale myoglobin. The first of two major products was acetimidated at all 19 epsilon-amino groups but not at the NH2 terminus. The second major product bore a blocked NH2 terminus but retained one unmodified epsilon-amino group, identified after modification by trinitrobenzenesulfonate as lysine residue 77. Of the minor components, one was identified as completely acetimidated at all 20 amino groups. The other three minor components appeared to contain irreversible by-products.  相似文献   

2.
The reaction of methyl acetimidate or isethionyl acetimidate with mitoplasts at pH 8.5 yields two derivatives of phosphatidylethanolamine. These derivatives are shown to be the mono-amidine derivative and the bis-derivative of phosphatidylethanolamine. The bis-derivative represents one phosphatidylethanolamine cross-linked to another phosphatidylethanolamine. Similar derivatives are formed by the reaction of dipalmitoyl phosphatidylethanolamine with these imidoesters in organic solution with the exception that much more monoderivative is produced. Methyl picolinimidate reacts with phosphatidylethanolamine of mitoplasts to form primarily the mono-derivative. The bis-derivative was not detected. The reaction of bovine rod outer segment discs with methyl acetimidate causes cross-linking of 30% of the membrane rhodospin as dimers. Putative monofunctional imidoesters cause considerable cross-linking of both phospholipids and proteins in cell membranes. Cross-linking can be minimized at pH 9.0.  相似文献   

3.
Several amino-reactive chemical probes which differ in hydrophobicity and charge and in their ability to penetrate the red cell membrane were tested for their ability to modify K+ leak and inorganic phosphate (Pi) leak in intact human red cells. Methyl picolinimidate (MP), ethyl acetimidate (EA), methyl acetimidate (MA) are hydrophilic penetrating probes whereas isethionylacetimidate (IA) is a hydrophilic non-penetrating probe. The order of their effectiveness in inhibiting Pi leak was found to be MP>EA>MA>IA. This order is in decreasing hydrophobicity and suggests that some penetration into the bilayer or into hydrophobic domains of the anion transport protein is required to modify an amino group required for Pi permeability through the membrane. These imidoesters have little or no effect on K+ leak in the red cell.Trinitrobenzenesulfonate (TNBS) a relatively non-penetrating hydrophobic anionic probe and fluorodinitrobenzene (FDNB) a penetrating hydrophobic neutral probe have markedly different effects on K+ and Pi leak. TNBS has little effect on K+ leak but markedly inhibits Pi leak. The effect of TNBS on Pi leak is not blocked by prior treatment with IA suggesting that these probes sense different populations of amino groups in the membrane. FDNB nearly completely blocks Pi leak and markedly increases K+ leak. The results with TNBS and FDNB indicate an asymmetric arrangement of amino groups on the red cell membrane. Certain amino groups on the outer surface of the membrane regulate Pi permeability whereas certain amino groups on the inner surface of the membrane regulate K+ permeabilty. The data also suggest that these amino groups are in a hydrophobic domain.  相似文献   

4.
Methylamine buffers can be used for the rapid quantitative removal of acetimidoyl groups from proteins and peptides modified by treatment with ethyl or methyl acetimidate. The half-life for displacement of acetimidoyl groups from fully amidinated proteins incubated in 3.44 M-methylamine/HCl buffer at pH 11.5 and 25 degrees C was approx. 26 min; this half life is 29 times less than that observed in ammonia/HCl buffer under the same conditions of pH and amine concentration. Incubation of acetimidated proteins with methylamine for 4 h resulted in greater than 95% removal of acetimidoyl groups. No deleterious effects on primary structure were detected by amino acid analysis or by automated Edman degradation. Reversible amidination of lysine residues, in conjunction with tryptic digestion, has been successfully applied to the determination of the amino acid sequence of an acetimidated mouse immunoglobulin heavy chain peptide. The regeneration of amino groups in amidinated proteins and peptides by methylaminolysis makes amidination a valuable alternative to citraconoylation and maleoylation in structural studies.  相似文献   

5.
1. Treatment with methyl acetimidate was used to probe the topography of several tetrameric glyceraldehyde 3-phosphate dehydrogenases, in particular the holoenzymes from rabbit muscle and Bacillus stearothermophilus. During the course of the reaction with the rabbit muscle enzyme, the number of amino groups fell rapidly from the starting value of 27 per subunit to a value of approx. five per subunit. This number could be lowered further to values between one and two per subunit by a second treatment with methyl acetimidate. The enzyme remained tetrameric throughout and retained 50% of its initial catalytic activity at the end of the experiment. 2. Use of methyl [1-14C]acetimidate and small-scale methods of protein chemistry showed that only one amino group per subunit, that of lysine-306, was completely unavailable for reaction with imido ester in the native enzyme. This results is consistent with the structure of the highly homologous glyceraldehyde 3-phosphate dehydrogenase of lobster muscle deduced from X-ray-crystallographic analysis, since lysine-306 can be seen to form an intrachain ion-pair with aspartic acid-241 in the hydrophobic environment of a subunit-subunit interface. 3. Several other amino groups in the rabbit muscle enzyme that reacted only slowly with the reagent were also identified chemically. These were found to be located entirely in the C-terminal half of the polypeptides chain, which comprises a folding domain associated with catalytic activity and subunit contact in the three-dimensional structure. Slow reaction of these 'surface' amino groups with methyl acetimidate is attributed to intramolecular ionic interactions of the amino groups with neighbouring side-chain carboxyl groups, a conclusion that is compatible with the reported three-dimensional structure and with the dependence of the reaction of ionic stength. 4. Very similar results were obtained with the enzymes from B. stearothermophilus and from ox muscle and ox liver, supporting the view that the ion-pair involving lysine-306 and aspartic acid-241 will be a common structural feature in glyceraldehyde-3-phosphate dehydrogenases. The B. stearothermophilus enzyme was fully active after modification. 5. No differences could be detected between the enzymes from ox muscle and ox liver, in accord with other evidence that points to the identify of these enzymes. 6. The pattern of slowly reacting amino groups in the enzyme from B. stearothermophilus, although similar to that of the mammalian enzymes, indicated one or two additional intramolecular ionic interactions of lysine residues that might contribute to the thermal stability of this enzyme.  相似文献   

6.
Addition of poly(U) to complexes of 40S and 60S subunits of rat liver ribosomes decreases the substitution of amino groups of 12 proteins of the small ribosomal subunit and of 11 proteins of the large subunit by [14C]-methyl acetimidate. When comparing the results obtained with this amino group specific reagent with the reactivity of the proteins against iodoacetamide it becomes obvious that 4 proteins of the small ribosomal subunit (S12, 18, 19, 24) and 3 proteins of the large one (L20, 22, 25) are partially protected by poly(U) against reaction with both reagents.  相似文献   

7.
The reversible reaction of exo-cis-3,6-endo-epoxy-4,5-cis-epoxyhexahydrophthalic anhydride (EEHPA) with free protein amino groups is described. The free protein amino groups of lysozyme can be completely blocked through the reaction of the anhydride EEHPA. The chemically less reactive epoxy groups in EEHPA-modified lysozyme remain intact during modification of the protein and can be used for many subsequent chemical reactions. Hydrolysis of the modified inactive lysozyme at pH 2.5 results in deblocking and almost complete recovery of the enzymic activity of the protein. The epoxy groups in EEHPA-modified proteins have a great many potential uses: disaggregation of supramolecular structures, conversion of hydrophobic membrane proteins or tryptic peptides into water-soluble coloured proteins or peptides, inhibition of tryptic cleavage at lysine residues, synthesis of chemically reactive proteins or enzymes for affinity chromatography or immobilized-enzyme technology, two-dimensional separation techniques for complex protein mixtures, detection of specific protein-binding sites for organic substrates or tumour diagnostics, synthesis of defined artificial glycoproteins for biophysical and cytochemical studies and chemical synthesis of radioactively labelled proteins.  相似文献   

8.
Amidination of the outer and inner surfaces of the human erythrocyte membrane   总被引:12,自引:0,他引:12  
We have synthesized a novel imidoester, isethionyl acetimidate, which is unable to penetrate the membrane of the human erythrocyte. It has the same specificity for amino groups as ethyl acetimidate, which penetrates the membrane. Either reagent can be labeled with 3H or 14C and, thus, be used to convert amines to radioactive amidines. An erythrocyte membrane saturated with either compound functions nearly normally. Therefore, the membrane can be double labeled if the amino groups on the outer surface of a cell are saturated with isethionyl acetimidate (e.g. labeled with 14C) and the remaining active sites are saturated with ethyl acetimidate (labeled with 3H). Alternatively, the membrane can be isolated after saturation with [14C]isethionyl acetimidate and treated with [3H]isethionyl acetimidate. From quantitative experiments of this kind we conclude that there are more than ten times as many reactive amino groups in protein on the inner surface than on the outer surface of the membrane. Nearly all of the reactive amino groups in lipid are on the inner surface. The localization of individual polypeptides confirms and extends assignments made previously by other techniques; as many as four major components may span the membrane. The proteins and lipids react to the same extent with ethyl acetimidate in the intact cell as they do in isolated membranes; this implies that the isolation does not load to major structural rearrangements.  相似文献   

9.
We have studied the effects of amidination of lysyl residues on the activity of angiotensin I converting enzyme isolated from human kidney. Anion concentration was an important reaction variable. In 4 M chloride or acetate, amidination with methyl acetimidate produced derivatives with up to a 4-fold increase in activity with hippuryl-glycyl-glycine as substrate. Modification with methyl p-hydroxybenzimidate also increased activity while treatment with methyl 4-mercaptobutyrimidate resulted in a 90% loss of activity. The effects of amidination were partially prevented when the reactions were carried out in the presence of the inhibitors, captopril or 5S-benzamido-4-oxo-6-phenyl-hexanoyl-L-proline. These results suggest that lysyl residues are present near the active site while different amino groups have a role in anion activation.  相似文献   

10.
Pre-equilibration of erythrocytes with the membrane-impermeable aldehyde, pyridoxal 5'-phosphate, for 30 min at 22 degrees C, prior to the addition of methyl acetimidate to the incubation mixture has been shown to prevent agglutination of acetamidinated cells which were resuspended in immune serum (Chao, T.L. and Berenfeld, M.R. (1981) J. Biol. Chem. 256, 5324-5326). This observation led to the possibility that the immune reaction, observed in some sickle cell anemia patients to reinfused cells which had been reacted with methyl acetimidate, could be prevented. The present communication further evaluates that reaction sequence and shows that while the pre-equilibration of cells with pyridoxal 5'-phosphate does protect membrane amines from reaction with methyl acetimidate, the protection is not extensive enough to prevent an immune response in a sickle cell anemia patient who had already been sensitized against acetamidinated cells. It is apparent that the design of antisickling agents which covalently modify hemoglobin must take into account protection of functional groups in the erythrocyte membrane, modification of which could produce an immunogenic response.  相似文献   

11.
1. The synthesis of methyl 5-iodopyridine-2-carboximidate and its reaction with amino groups of model compounds and performic acid-oxidized insulin are described. The reagent was designed to introduce heavy atoms into specific sites in proteins. 2. Specific reaction with the amino groups of oxidized insulin can be achieved under reasonably mild conditions giving rise to the corresponding N-monosubstituted amidines. 3. The extent of reaction of this reagent with protein amino groups can be readily determined by difference spectroscopy. Modification of lysine residues inhibits tryptic cleavage at such residues, and this can be of assistance in establishing the site of modification in the primary structure. 4. Evidence is presented to show that methyl 5-iodopyridine-2-carboximidate can react specifically, at pH5.0, with the aromatic amino group of 3-amino-l-tyrosine; the final product of this reaction is a 2-arylbenzoxazole. 5. The use of this reagent as a general method for preparing heavy-atom isomorphous derivatives of proteins is discussed.  相似文献   

12.
1. Treatment with methyl acetimidate was used to probe the topography of the tetrameric fructose 1,6-diphosphate aldolase from ox liver. A single treatment with imido ester in the presence or absence of 20mM-fructose 1,6-diphosphate caused the number of amino groups in the enzyme to fall to approx. 30% of the starting number (assumed to be 30 per subunit). The catalytic activity of the aldolase modified in the presence of fructose 1,6-diphosphate was unaffected, whereas that of the enzyme modified in the absence of substrate fell by about 20%. 2. Use of methyl [1-14C]acetimidate and small-scale methods of protein chemistry showed that the amino group of lysine-27 (the numbering is that of the highly homologous rabbit muscle enzyme) is essentially unavailable for amidination in the native enzyme and is therefore predicted to be buried in a hydrophobic environment, probably in the form of an ion-pair with a negatively charged side-chain carboxyl group. All the other lysine residues that reacted poorly with methyl acetimidate in the native enzyme (a total of 7) were found to be within the primary structure bounded by lysine-107 and lysine-227. An important member of this group of lysine residues displaying aberrant reactivity is lysine-227, which is known to form an imine with the substrate as part of the catalytic mechanism of the enzyme. 3. The results of the amidination experiments can be correlated in an interesting way with previous studies of thiol-group modification in the aldolases. Taken together, and arguing in part by analogy with the results of identical experiments with glyceraldehyde 3-phosphate dehydrogenases where the three-dimensional structure is known [Lambert & Perham (1977) Biochem. 4. 161. 49-62], they suggest that the region of primary structure from residues 107-227 may form the whole or part of a three-dimensional structural feature, perhaps a folding domain. A three-dimensional structure deduced from X-ray-crystallographic analysis will be needed to interpret these findings more closely. 4. The amino groups of lysine residues are commonly thought to reside at the 'surface' of protein structures. The patterns of specific lysine residues in glyceraldehyde 3-phosphate dehydrogenases and in aldolases that have been found to react poorly with methyl acetimidate in the native enzymes can be attributed to intramolecular ionic interactions deep in hydrophobic pockets and at the protein 'surface'. Such ionic interactions may contribute significantly to the stability of a given protein.  相似文献   

13.
Two variants of chloramphenicol acetyltransferase which are specified by genes on plasmids found in Gram-negative bacteria were subjected to amidination with methyl acetimidate to determine the relative reactivity of surface lysine residues and to search for unreactive or "buried" amino groups which might contribute to stabilization of the native tetramers. Representative examples of the type-I and type-III variants of chloramphenicol acetyltransferase were found to have one lysine residue each in the native state which appears to be inaccessible to methyl acetimidate. The uniquely unreactive residue of the type-I protein is lysine-136, whereas the lysine that is "buried" in the type-III enzyme is provisonally assigned to residue 38 of the prototype sequence. It is suggested that the lysine residue in each case participates in the formation of an ion pair at the intersubunit interface and that the two amino groups in question occupy functionally equivalent positions in the quaternary structures of their respective enzyme variants. Lysine-136 of type-I enzyme is also uniquely unavailable for modification by citraconic anhydride, a reagent used to disrupt the quaternary structure of the native enzyme. Contrary to expectation, exhaustive citraconylation fails to dissociate the tetramer, but does destroy catalytic activity. Removal of citraconyl groups from modified chloramphenicol acetyltransferase is accompanied by a full region of catalytic activity. Analysis of the rate of hydrolysis of citraconyl groups from the modified tetramer by amidination of unblocked amino groups with methyl [14C]acetamidate reveals difference in lability for several of the ten modified lysine residues. Although the unique stability of the quaternary structure of chloramphenicol acetyltransferase may be due to strong hydrophobic interactions, it is argued that lysine-136 may contribute to stability via the formation of an ion pair at the subunit interface.  相似文献   

14.
Bovine rod outer segment membranes were treated with cross-linking reagents before and after light exposure. Bleached membranes showed enhanced cross-linking with difluorodinitrobenzene or methyl acetimidate compared to dark-adapted membranes. The light-induced enhancement of cross-linking may be due to increased association of rhodopsin monomers in the light and/or due to increased reactivity of amino and sulfhydryl groups of bleached rhodopsin. In some instances, the band ascribed to the rhodopsin monomer in gel electrophoresis appears as a partially resolved doublet. Treatment of bleached rod outer segment membranes with methyl acetimidate improved the resolution of the doublet into two closely migrating bands.  相似文献   

15.
A single amino group in horse liver alcohol dehydrogenase was modified with methyl(14C)acetimidate by a differential labeling procedure. Lysine residues outside the active site were modified with ethyl acetimidate while a lysine residue in the active site was protected by the formation of an enzyme-NAD+-pyrazole complex. After the protecting reagents were removed, the enzyme was treated with methyl(14C)acetimidate. Enzyme activity was enhanced 13-fold as 1.1 (14C)acetimidyl group was incorporated per active site. A labeled peptide was isolated from a tryptic-chymotryptic digest of the modified enzyme in 35% overall yield. Amino acid composition and sequential Edman degradations identified the peptide as residues 219-229; lysine residue 228 was modified with the radioactive acetimidyl group.  相似文献   

16.
1. The reaction of exo-cis-3,6-endoxo-Delta(4)-tetrahydrophthalic anhydride with amino groups of model compounds and lysozyme is described. 2. Reaction with the in-amino group of N(alpha)-acetyl-l-lysine amide gives rise to two diastereoisomeric products; at acid pH the free amino group is liberated with anchimeric assistance by the neighbouring protonated carboxyl group with a half-time of 4-5h at pH3.0 and 25 degrees C. 3. The amino groups of lysozyme can be completely blocked, with total loss of enzymic activity. Dialysis at pH3.0 results in complete recovery of the native primary and tertiary structure of lysozyme and complete return of catalytic activity. 4. The specificity of reaction of this and other anhydrides with amino groups in proteins is discussed.  相似文献   

17.
The rate of hydrolysis of the imido ester methyl acetimidate and its rate of amidination of denatured aldolase were investigated under different conditions of temperature, pH and ionic strength. Both rate constants increase greatly with temperature, whereas ionic strength has no effect on either. The effect of pH is more complex. Between pH 6.8 and 8.8 the rate of hydrolysis decreases and the rate of amidination increases. These results are discussed in terms of the reaction mechanisms involved.  相似文献   

18.
1. Isoionic chemical modification of amino groups of trypsin (EC 3.4.21.4) was studied for the purpose of obtaining a well-defined modified trypsin with minimum changes in physicochemical properties and with sufficient stability at neutral pH. Acetamidination with methyl acetimidate hydrochloride proceeded very rapidly at pH9.8 and 5degrees C and all 14 epsilon-amino groups were modified in 2h. The reaction was limited to epsilon-amino groups. The alpha-amino group of N-terminal isoleucine was modified only by repeated reactions in the presence of 5.5 M-guanidine or 8 M-urea. 2. The epsilon-acetamidinated derivative of beta-trypsin retained enzymic activity at values comparable with those of native enzyme tested with alpha-N-benzoyl-L-arginine ethyl ester and alpha-N-benzoyl-L-arginine p-nitroanilide as substrates; it also showed substrate activation comparable with that of native enzyme. The acetamidination of alpha-trypsin resulted in approx. 50% decrease in its esterolytic activity. 3. The epsilon-acetamidinated beta-trypsin was very stable at pH8 and 25degrees C in the absence of Ca2+. The activity of 0.04% (W/V) enzyme solution remained practically unchanged for 10h, and after 24h 90% of the activity was still retained. Possible autolytic cleavage of peptide bonds of acetamidinated enzymes was followed by N-terminal analysis by using automated Edman degradation. Only the Arg(105)-Val(106) bond was found to be cleaved to an appreciable extent. Thus beta-trypsin can be stabilized simply by complete acetamidination of epsilon-amino groups without modifying guanidino groups of arginine residues. Acetamidinated alpha-trypsin was unstable, but its inactivation at a neutral pH could not be attributed to the cleavage of a single specific peptide bond. 4. The acetamidination of the alpha-amino group of the N-terminal isoleucine results in the inactivation of esterolytic activity. However, this enzyme retained the ability to react with p-nitrophenyl p'-guanidinobenzoate. 5. It was concluded that acetamidination of beta-trypsin is a convenient method for preparing a well-defined stable and soluble trypsin derivative without appreciable change in its physical properties.  相似文献   

19.
D S Lyles  K P McKinnon  J W Parce 《Biochemistry》1985,24(27):8121-8128
The hemagglutinin (HA) glycoprotein of influenza virus was labeled in its cytoplasmic domain with fluorescein. Reactive amino groups in the external domain were blocked by modification of the intact virus with the membrane-impermeable reagent isethionyl acetimidate. The HA was then solubilized with the detergent octyl glucoside, and the single lysine in the cytoplasmic domain was reacted with fluorescein isothiocyanate. This protocol resulted in the incorporation of 1.3 mol of fluorescein/mol of HA. Using a virus strain lacking lysine in the cytoplasmic domain of HA, it was determined that 0.47 mol of fluorescein/mol of HA was located at an additional site(s). The fluorescein groups at both sites exist in an environment of reduced polarity as shown by a shift in excitation and emission maxima and a shift in the pKa of the fluorescein groups. The fluorescence polarization and the pKa of the fluorescein groups were greater when the HA was incorporated into liposomes than when in detergent solution. These data indicate that the fluorescein groups interact directly with the lipid bilayer, probably in the phospholipid head-group region. The fluorescence properties of the labeled HA were not responsive to the gel to liquid-crystal phase transition in the lipid bilayer. These results indicate that the boundary between the cytoplasmic domain and the hydrophobic sequence that anchors the protein to the lipid bilayer is located in the head-group region of the bilayer.  相似文献   

20.
1. Maleic anhydride was shown to react rapidly and specifically with amino groups of proteins and peptides. Complete substitution of chymotrypsinogen was achieved under mild conditions and the extent of reaction could be readily determined from the spectrum of the maleyl-protein. 2. Maleyl-proteins are generally soluble and disaggregated at neutral pH. Trypsin splits the blocked proteins only at arginine residues and there is frequently selectivity in this cleavage, e.g. in yeast alcohol dehydrogenase and pig glyceraldehyde 3-phosphate dehydrogenase. 3. The group is removed by intramolecular catalysis at acid pH. The half-time was 11-12hr. at 37 degrees at pH3.5 in in-maleyl-lysine or in maleyl-chymotrypsinogen. 4. The unblocking reaction can be used as the basis for a ;diagonal'-electrophoretic separation of lysine peptides and N-terminal peptides, as shown by studies with beta-melanocyte-stimulating hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号