首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies had shown that a small amount of single-stranded DNA (ssDNA) separated from the bulk nuclear DNA of different animal cells by an improved method of hydroxylapatite chromatography (HAC) contains two distinct molecular fractions. The major fraction consists of non self-reassociating sequences that are reassociable to the unique component of bulk DNA and in great part hybridizable to homologous RNA. The minor fraction consists of self-reassociable sequences also reassociable to moderately repetitious bulk DNA. In the present work ssDNA from Friend leukemia cells induced to differentiate (ind FLC) by DMSO was compared with ssDNA from untreated control Friend cells (cont FLC). It was shown that the relative amount of ssDNA is greater in ind FLC than in cont FLC (1.5 – 1.6% and 1.2 – 1.3% of the total cell DNA respectively after a second step of HAC purification). The ind FLC-ssDNA contained a greater proportion of self-reassociable sequences (33–35%) as compared with cont FLC-ssDNA (18–20%). Also the relative amounts of ssDNA hybridizable to cytoplasmic RNA from homologous cells was slightly but constantly higher in ind FLC-ssDNA (33–34%) than in cont FLC-ssDNA (29–30%). Cross hybridizations were carried out between highly radioactive ssDNA and cellular RNAs in great excess, whether total cytoplasmic RNAs or polyadenylated mRNAs. At saturation levels, the hybridized ssDNA fraction was separated from the non-hybridized fraction, and both fractions were rehybridized to RNA from ind FLC or cont FLC. The results indicated that about 10% of ind FLC-ssDNA appeared to be specific for DMSO-treated cells. This may correspond to the expression of 1000–2000 different cytoplasmic mRNAs mostly belonging to the low abundance class.  相似文献   

2.
Single-stranded DNA (ssDNA) isolated from (and amounting to 1.5-2% of) native nuclear DNA of cultured embryonic chicken cells labelled 1-2 days with 3H-thymidine was analyzed by self-hybridization, hydroxyapatite chromatography (HAC) partial digestion with S1 nuclease, isopycnic centrifugation. Two main fractions were rehybridized to excess amounts of bulk nuclear DNA or total cytoplasmic RNAs. The major fraction, equivalent to 75% of total ssDNA, consists of unique DNA sequences, apparently derived from multiple coding regions of the cell genome, since they are not self-reassociating but are hybridizable to the non repetitious portion of bulk nuclear DNA and 40-45% of them are complementary to cell RNAs. About half of these ssDNA sequences hybridizable to cell RNAs seem to be closely connected with molecules belonging to the minor ssDNA fraction. The latter fraction consists of self-reassociating, moderately repeated DNA sequences, mainly derived from non coding regions of the cell genome. These findings are discussed in the light of others, showing interspersion of coding and non coding DNA sequences and susceptibility of active genes to certain nucleasic attacks.  相似文献   

3.
Single-stranded DNA (ssDNA), separated from bulk double-stranded DNA (dsDNA) of HTC by an improved method of hydroxyapatite chromatography, exhibited the same characteristics as ssDNA previously found in various cell species. It amounted to 1.5–2% of the total nuclear DNA. Only 24–26% could be self-reassociated, but the greatest part hybridized to non-repetitious DNA fraction and about 30% hybridized to homologous mRNA.Other results tend to prove that the complementary sequences of HTC-ssDNA probably consist of non-base-paired segments attached to double helical regions of dsDNA. In effect, after hydroxyapatite chromatography, a small portion of HTC-dsDNA (2–3%) was found to be rapidly digestible by S1 nuclease and this limited digestion was sufficient to reduce markedly the hybridization rates of dsDNA with both DNA and cell-free synthesised cDNA copies of polyadenylated RNAs. Furthermore, these 3H-cDNA copies could not be annealed to ssDNA under conditions that allowed their reassociation with total nuclear DNA. These findings complete the demonstration that the greatest part of ssDNA appears to be formed via selective nicks, probably enzymatic, in the coding strand of actively transcribed DNA regions.  相似文献   

4.
Single-stranded DNA (ssDNA), equivalent to about 2% of the total nuclear DNA, was isolated by an improved method of hydroxyapatite chromatography from native nuclear DNA of rat myoblast cells and myotubes of the L6 line. Small quantities of 125I-labelled ssDNA were annealed with a large excess of unlabelled DNA, cytoplasmic RNA and mRNA from myoblasts or myotubes. The results indicated that ssDNA belongs to the non-repetitious portion of the cell genome and is formed of two distinct molecular fractions. The major ssDNA fractions (75%) consist of non-self-reassociating DNA sequences and the minor fraction (25%) consists of self-reassociating DNA sequences. About 30--32% and 25--26% of ssDNA from myoblast represent DNA sequences complementary to total cytplasmic RNAs and polyadenylated RNAs respectively. Hybridizations of ssDNA with an excess of RNA from myoblasts and/or myotubes show differences in the abundance and the diversity of mRNA during mascular differentiation. These differences were confirmed by DNA-driven reactions between 125I-labelled polyadenylated RNA and ssDNA in great excess.  相似文献   

5.
6.
7.
8.
Newly-synthesized, high molecular weight RNA from salivary gland polytene chromosomes and from the nuclear sap was investigated by RNA/DNA hybridization. Salivary glands were incubated for 90 min with radioactive nucleosides and afterwards fixed. Chromosomes and nuclear sap were subsequently isolated by microdissection. Labelled RNA, extracted from three different chromosomal fractions and from the nuclear sap, was subjected to different hybridization procedures under conditions which primarily allow repeated nucleotide sequences to interact.In one type of experiments RNA was hybridized by a microtechnique to filter-bound DNA at increasing RNA/DNA input ratios. Nuclear sap RNA saturated 0.25−0.30% of the DNA, while the chromosomal RNA fractions had not reached a plateau even after hybridization with 0.5−1% of the DNA. Thus chromosomal RNA appears to contain sequences which are absent from, or present in only low concentration in, the nuclear sap. Nuclear sap RNA hybrids also showed a higher thermal stability than chromosomal RNA hybrids, which may reflect a higher precision of base-pairing in hybrids formed by nuclear sap RNA.In a second type of experiments the time dependence of hybrid formation was investigated. The hybridization rate for nuclear sap RNA was about three times as high as the corresponding rate for chromosomal RNA. This result indicates a relative enrichment of rapidly hybridizing RNA sequences in the nuclear sap.The difference in hybridization properties between chromosomal and nuclear sap RNA may be due to a predominance in the nuclear sap of RNA from a special chromosomal puff, the Balbiani Ring 2 (BR2), which has been shown to contain highly repeated DNA sequences. A comparison between the hybridization properties of nuclear sap RNA and BR2 RNA indicated that 55–70% of nuclear sap RNA may be derived from BR2.The specific hybridization rate of chromosomal RNA points to an average multiplicity of about 30 for its complementary DNA sequences. On the basis of the present and previous results it is suggested that the repeated DNA is arranged in families of related sequences and that sequences belonging to a particular family are distributed in different chromosomes.  相似文献   

9.
We have compared the total single-copy sequences transcribed as nuclear RNA in blastula and pluteus stage embryos of the sea urchin Tripneustes gratilla by hybridization of excess nuclear RNA with purified radioactive single-copy DNA. The kinetics of hybridization of either blastula or pluteus nuclear RNA with single-copy DNA show a single pseudo-first-order reaction with 34% of the single-copy genome. From the rate of the reaction and the purity of the nuclear RNA, it can be estimated that the reacting RNAs are present on the average at a concentration of one molecule per 14 nuclei. A mixture of blastula and pluteus RNA also hybridizes with 34% of the single-copy genome, indicating that the total complexity of RNAs transcribed at both stages is no greater than transcribed at each stage alone. The identity of the sequences transcribed by blastula and pluteus embryos was further examined by fractionation of the labeled DNA into sequences complementary and not complementary to pluteus RNA. This was achieved by hybridization of single-copy DNA to high pluteus RNA Cot, and separation of the hybridized and nonhybridized DNA on hydroxylapatite. Using either the DNA complementary or noncomplementary with pluteus RNA, essentially identical amounts of RNA:DNA hybrids are formed at high RNA Cot with blastula or pluteus RNA. Gross changes in the total RNA sequences transcribed do not appear to be involved in the developmental changes between blastula and pluteus, even though 45% of the mRNA sequences change between these two stages (Galau et al., 1976).  相似文献   

10.
Polytene chromosomes of Chironomus tentans were hybridized in situ with in vivo labelled nuclear and chromosomal RNA. Nuclear RNA formed hybrids preferentially in five distinct regions considered to contain clustered, repeated DNA sequences. These are the two nucleolar organizer regions, Balbiani ring 1 and 2, and the 5 S RNA genes in region 2A of chromosome II, which together comprised almost 70% of the total number of grains over the complement. The remaining grains were diffusely distributed over the chromosomes. There was a significant difference in the distribution of grains when RNA from different chromosomes was used for hybridization. Chromosome I RNA hybridized preferentially with chromosome I, and chromosome II+III RNA preferentially with chromosome II+III. Some regions within the chromosomes hybridized significantly more chromosomal RNA than other regions. A considerable cross-hybridization of RNA from one particular type of chromosome with the other chromosomes was also found. It is concluded that repeated DNA sequences which hybridize with heterogeneous chromosomal RNA in C. tentans are widely dispersed in the genome. Some of these sequences have a delimited localization, others are dispersed, and some sequences which are transcribed in one particular chromosome are present also in the other chromosomes.  相似文献   

11.
Two DNA sequences that appear to be homologous to large-subunit mitochondrial ribosomal RNA genes have been identified in the stone crabs Menippe mercenaria and M. adina. Amplification from whole genomic DNA by polymerase chain reaction (PCR) with oligonucleotide primers based on conserved portions of large-subunit mitochondrial rRNA genes consistently amplified two products of similar length (565 and 567 bp). These products differed at 3% of their nucleotide bases, and could be distinguished by a HindIII site. Only one of these sequences (designated the A sequence) was detected by PCR in purified mitochondrial DNA. The other (designated the B sequence) hybridized to total genomic DNA at a level consistent with a nuclear genome location. It is unlikely that the type B product would have been recognized as a nuclear copy by examination of its sequence alone. This is the first report of a mitochondrial gene sequence translocated into the nuclear genome of a crustacean.   相似文献   

12.
Polyadenylated RNA populations from normal and 16-hour regenerating rat-liver nuclei were compared by heterologous hybridisation reactions with cDNA and unique DNA probes. Whereas unique DNA hybridisations did not show differences between the RNA populations, comparisons by cDNA hybridisation showed that about 10--15% by weight of polyadenylated sequences present in the nuclei of 16-hour regenerating rat livers were not found in the polyadenylated nuclear RNA of normal rat livers. These regenerating-specific nuclear cDNA sequences were isolated and characterised; the experiments showed that the complexity of the new sequences was 1-2 x 10(7) nucleotides (equivalent to 5,000--10,000 RNA sequences of 2,000 nucleotides in length) and that they were probably not potential messenger RNA sequences.  相似文献   

13.
We developed a simple and rapid technique to synthesize single-stranded DNA (ssDNA) probes for fluorescent in situ hybridization (ISH) to human immunodeficiency virus 1 (HIV-1) RNA. The target HIV-1 regions were amplified by the polymerase chain reaction (PCR) and were simultaneously labeled with dUTP. This product served as template for an optimized asymmetric PCR (one-primer PCR) that incorporated digoxigenin (dig)-labeled dUTP. The input DNA was subsequently digested by uracil DNA glycosylase, leaving intact, single-stranded, digoxigenin-labeled DNA probe. A cocktail of ssDNA probes representing 55% of the HIV-1 genome was hybridized to HIV-1-infected 8E5 T-cells and uninfected H9 T-cells. For comparison, parallel hybridizations were done with a plasmid-derived RNA probe mix covering 85% of the genome and a PCR-derived RNA probe mix covering 63% of the genome. All three probe types produced bright signals, but the best signal-to-noise ratios and the highest sensitivities were obtained with the ssDNA probe. In addition, the ssDNA probe syntheses generated large amounts of probe (0.5 to 1 microg ssDNA probe per synthesis) and were easier to perform than the RNA probe syntheses. These results suggest that ssDNA probes may be preferable to RNA probes for fluorescent ISH. (J Histochem Cytochem 48:285-293, 2000)  相似文献   

14.
The complementary strands of adenovirus type 12 DNA were separated, and virus-specific RNA was analyzed by saturation hybridization in solution. Late during infection whole cell RNA hybridized to 75% of the light (1) strand and 15% of the heavy (H) strand, whereas cytoplasmic RNA hybridized to 65% of the 1 strand and 15% of the h strand. Late nuclear RNA hybridized to about 90% of the 1 strand and at least 36% of the h strand. Double-stranded RNA was isolated from infected cells late after infection, which annealed to greater than 30% of each of the two complementary DNA strands. Early whole cell RNA hybridized to 45 to 50% of the 1 strand and 15% of the h strand, whereas early cytoplasmic RNA hybridized to about 15% of each of the complementary strands. All early cytoplasmic sequences were present in the cytoplasm at late times.  相似文献   

15.
16.
17.
18.
19.
20.
RNA molecules from nuclear and cytoplasmic polyribosomes of adenovirus-infected HeLa cells were compared by hybridization to analyse the sequence content. Nuclear polyribosomes were released by exposure of intact detergent-washed nuclei to poly(U) and purified. Cytoplasmic polyribosomes were also purified from the same cells. To show that nuclear polyribosomes contain ribosomes linked by mRNA, polyribosomes were labelled with methionine and uridine in the presence of actinomycin D in adenovirus-infected cells. Purified nuclear polyribosomes were treated with EDTA under conditions which dissociate polyribosomes into ribosomes and subunits with a simultaneous release of mRNA, and sedimented. The treatment dissociated these polyribosomes, releasing the mRNA from them. Radiolabelled total RNA from each polyribosome population was fractionated in sucrose gradients into several pools or hybridized to intact adenovirus DNA to select virus-specific RNA. Sucrose-gradient-fractionated pool-3 RNA (about 28S) and virus-specific RNA were then hybridized to fragments of adenovirus DNA cleaved by restriction endonucleases SmaI, HindIII and EcoRI by the Southern-blot technique and by filter hybridization. The results showed that nuclear RNA contained sequences, from about 0 to 18 map units, which were essentially absent from cytoplasmic RNA. Furthermore, the amount of virus-specific RNA for a particular sequence was also different in the two populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号