首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microelectrophoretically applied morphine depressed spontaneously discharging cortical neurones of rats and blocked excitation induced by electrophoretic administrations of either acetylcholine or l-glutamate. This depressant effect and both the anti-acetylcholine and the anti-glutamate effect were naloxone antagonizable and therefore regarded as specific morphine actions. The excitatory effects of morphine were not affected by naloxone application and were classified as non-specific.In chronically morphinized rats the depressant effect of morphine on spontaneous discharge activity and also its blocking action upon acetylcholine and l-glutamate-induced excitation were almost completely abolished. The predominant response in such pre-treated animals was non-specific excitation. Acetylcholine and l-glutamate were found to be more effective in tolerant rats (supersensitivity).  相似文献   

2.
Electrical stimulation of the vagal trunk with 10 Hz in frequency, 3 ms in duration and 15 volt in intensity for 10 s in cats produced an excitatory response of the stomach and the response was composed of two phases, an initial rapid excitation during stimulation period and the late multi-peak response after stimulation period. The initial response was inhibited by the administrations of hexamethonium (10 mg/kg, i.v.) and atropine (100 micrograms/kg, i.v.). The late response was not inhibited by hexamethonium but was inhibited by atropine (100 micrograms/kg, i.v.). The hexamethonium-sensitive initial excitation was not affected by the administration of morphine and gamma-aminobutyric acid (GABA). On the other hand, the hexamethonium-resistant late response was attenuated by the treatment with morphine (1 to 10 mg/kg, i.v.) and GABA (100 to 500 micrograms/kg, i.v.). Such inhibitory actions of morphine and GABA on the late response were antagonized by picrotoxin. From these results, it was concluded that morphine might inhibit specifically the hexamethonium-resistant late excitatory response of the stomach without affecting the hexamethonium-sensitive initial excitatory response and the inhibitory effect of morphine on the late response of stomach might be due to action of GABA released from the intramural neurons of gastric walls in cats.  相似文献   

3.
Opioid analgesics have less efficacy in diabetic neuropathy treatment, and tolerance often occurs after chronic usage. Given that thalidomide can potentiate the morphine efficacy in diabetic neuropathy treatment, we investigated the effects of intrathecal administrations of thalidomide on morphine tolerance during the treatment of diabetic neuropathy. We found that intrathecal administrations of thalidomide (25 mg/kg/ml) potentiated the analgesic effects of morphine on mechanical hyperalgesia and prevented the development of morphine tolerance. While this treatment regimen did not alter the protein levels of μ-opioid receptor (MOR) in the spinal cord of diabetic rats, chronic morphine treatment robustly increased MOR binding density in the synaptic plasma membranes fraction, but decreased it in the microsomal fraction. Furthermore, thalidomide was able to reverse the distribution of MOR altered by chronic morphine treatment. Finally, STZ-induced diabetes promoted PKC activation and enhanced TNFα level in the spinal cord, which were attenuated by intrathecal administrations of thalidomide. Taken together, these results suggested that thalidomide may potentiate morphine efficacy on diabetic neuropathy and prevent the development of morphine tolerance by suppressing PKC activation and TNFα level in the spinal cord.  相似文献   

4.
The effects of the molluscan neuropeptide FMRF-amide were tested on several neurones in the suboesophageal ganglia of the snail Helix aspersa. Almost all neurones tested responded to the peptide, some being hyperpolarized (H response) and others depolarized (D response). The H response is due primarily to an inward potassium current and may be blocked in 20 microM 4-aminopyridine. The hyperpolarizing actions of FMRF-amide and dopamine may be separated by ergometrine which blocks the response to dopamine but not to FMRF-amide. The D response is due mainly to an inward sodium current but this is not blocked by d-tubocurarine, morphine or TTX. It appears to be mediated by a distinct receptor/ionophore as excitation by ACh and 5-HT are both antagonized by d-tubocurarine. The Leu2-substituted analogue FLRF-amide was found to produce similar H responses to FMRF-amide, but was much less potent at producing D responses. It did, however, produce cross-desensitization of the D response to FMRF-amide, suggesting that it does bind to the FMRF-amide receptor.  相似文献   

5.
Effects of GABA, pentobarbital and picrotoxin upon spontaneous and evoked activity of neurones of the medial septal nucleus and the nucleus of the diagonal band (MS-DB) were investigated in the guinea pig septal slices. GABA and pentobarbital have similar effect upon all neurones, but the cells with a regular single spike and rhythmic burst activity of pacemaker type were less sensitive to their inhibitory influence. Picrotoxin affects neither frequency, nor pattern of activity. Electrical stimulation of the medial forebrain bundle evoked initial suppression of activity in majority of the neurones (74%); the remaining cells reacted mainly with an initial burst. GABA and pentobarbital increased the duration of the initial inhibition and revealed it in all cells with initial excitation in the control state. Picrotoxin did not influence this type of response, but revealed initial short-latency bursts in the cells with inhibitory effect in control state. The experiments show double nature of the effect of afferent stimulation controlling the activity of the MS-DB neurones. The mechanism of synchronization of the rhythmic activity in MS-DB, resulting in generation of the hippocampal theta-rhythm, is discussed.  相似文献   

6.
A simplified method to study the acetylcholine (ACh) turnover rate (TRACh) in brain parts of drug treated rats has been presented. In striatum and occipital cortex of rats receiving a large dose of morphine (140 μ moles/kg i.p.) or implanted chronically with morphine pellets, the TRACh is influenced in a different manner. The single injection of morphine reduced the synthesis of ACh in cortex but not in striatum. Morphine pellets decreased striatal TRACh but failed to alter the TRACh in occipital cortex. Naloxone reversed both changes of TRACh elicited by morphine although it was devoid of any effect of the synthesis of ACh in rat brain parts. We suggest that morphine may prevent the ACh release from neurons as proposed by others, however, this effect in striatum of rats receiving a single dose of morphine is masked by the simultaneous action of morphine on the dopaminergic nigrostriatal pathway which regulates the turnover rate of striatal ACh.  相似文献   

7.
1. Noradrenaline, isoprenaline, and phenylephrine have been applied my microiontophoresis to neurones in the guinea pig cerebral cortex. All three compounds produced depression of neuronal firing, and all could be antagonized to some extent by phentolamine or propranolol. 2. The responses to isoprenaline were substantially reduced in size after a few applications. Noradrenaline and phenylephrine responses were partially reduced at the time of isoprenaline insensitivity, and the responses could now be blocked completely by phentolamine. 3. The results suggest that two kinds of receptors are present in the guinea pig cerebral cortex, with properties similar to alpha and beta receptors in the periphery. A single receptor with intermediate properties would not readily explain the present results. 4. The results are not consistent with the proposal that alpha receptors mediate neuronal excitation, and beta receptors inhibition in the cerebral cortex. 5. It is also suggested that the failure of some previous studies on guinea pig cortex in vitro to demonstrate the presence of beta receptors may be due to the particularly rapid desensitization of these receptors.  相似文献   

8.
The barrelfield of the adult rats was removed by suction and embryonic tissue of the somatosensory neocortex was transplanted into the cavity. Spontaneous and evoked activity of the grafted neurones was investigated extracellularly 2-3 months after the grafting. The light microscopy of the grafts revealed the presence of normal neuronal cells, but their distribution was diffuse, and they were not organized into barrels as in intact neocortex. The background activity of grafted neurones depended upon the level of the recipient's anaesthesia. The response types of the grafted neurones to vibrissae deflection and to tactile stimulation of the host body surfaces, their latencies and lability did not differ from such of the intact somatosensory cortex, but the receptive fields of the grafted neurones were larger. There was also substantial convergence of inputs from other surfaces upon the grafted neurones. The effectiveness of stimulation of the various skin areas was determined by the proximity of their neocortical representations to the graft.  相似文献   

9.
In conditions of stereotaxic fixation, noradrenaline microionophoresis and stimulation of the lateral hypothalamus acted in the same sense on impulse activity of 35 and 37% of the neurones in the reticular formation of satiated rabbits, in joint action increasing the number of cells with distribution of intervals characteristic of alimentary motivational excitation. Microionophoresis of acetylcholine to the neurones of the orbital cortex in freely behaving rabbits reshaped the impulse activity of 57% of cells in accordance with the pattern of discharge activity characteristic of alimentary motivational excitation. Such excitation, natural as well as artificially evoked, widens polychemical properties of the neurones of the reticular formation and, on the contrary, narrows polychemical properties of the nerve cells of the orbital cortex.  相似文献   

10.
11.
B R Sastry 《Life sciences》1979,24(23):2169-2177
In decerebrated spinal cats, the effects of iontophoretically applied acetylcholine (ACh) and substance P were examined on the responses of dorsal horn neurones to noxious stimulation and touch of the skin. Both agents, in amounts that did not have a significant direct effect on the neuronal firing rate, prolonged the response of the cells to noxious stimulation but did not alter that to touch stimulation. The peptide and ACh potentiated the late, but not the early, responses of dorsal horn neurones to sural Aδ and C afferent stimulation. Substance P-induced potentiation of the above responses was observed even when the agent did not produce a significant depolarization of nociceptive cells. In greater amounts, the peptide depolarized the neurones, an effect that was not associated with a detectable change in the membrane resistance. These results indicate that substance P facilitates nociceptive pathways by potentiating the subliminal fringe and, in greater amounts, by depolarizing the cells. The failure by the peptide to potentiate touch-induced excitation of the nociceptive neurones appears not to be due to the selectivity of the drug effect but due to the absence of subliminal fringe.  相似文献   

12.
Inhibition of dopamine synthesis by a single injection of α-methyl-para-tyrosine (200 mg/kg, i.p.) was complete from 30 to at least 300 min after administration. When morphine (20 mg/kg) was given intraperitonealy 30 min after α-MpT treatment an enhanced decline of dopamine was observed in frontal parts of the cortex but not in the striatum. These results indicate that morphine affects dopaminergic neurons in frontal parts of the cortex in a way differently from those in the striatum of the rat. This may be caused either by a difference in the properties of dopaminergic nerve endings in both structures or by an effect of morphine on the input to the cortical system which is lacking in the striatum.  相似文献   

13.
The pharmacological properties of a new analgesic drug, 2-piperidinoethyl dibenzylglycolate (PDG), have been demonstrated by classical tests. The technique of iontophoresis was used in order to compare the effects of PDG with those of Tyr-D-Ser-Gly-Phe-Leu-Thr (DSTLE), syndyphalin, morphine and naloxone (NAL) on hypothalamic neurones. PDG as other four substances evoked only inhibitory responses. Some neurones, on which were tested three substances, were sensitive to one, two or three of these substances. The differential responses so obtained suggested that PDG does not act on mu- and delta-receptors but on an unidentified receptor for which morphine and NAL have a high affinity as agonist. Structural requirements for activity on different receptors were also proposed on the basis of crystallographic data and the above results.  相似文献   

14.
The analgetic activity of the tetrapeptide enkephalin analog, its influence on the interneuronal transmission of excitation in various areas of the central nervous system and on opiate receptors of vas deferens were studied. The tetrapeptide was found to have a marked analgetic effect during intravenous injection to mice but to be less active than morphine. The tetrapeptide as well as morphine inhibited the impulse summation in rabbits and both spontaneous and bradykinin-induced neuronal activity in the rat sensory motor cortex. The tetrapeptide inhibited the contractions of isolated vas deferens in mice. The opiate antagonist naloxone eliminated both analgetic effect of the tetrapeptide and its inhibitory effect on the impulse summation, neuronal activity and contractions of vas deferens.  相似文献   

15.
Electrocoagulation of lateral vestibular nucleus (NVL) reduces inhibitory effect of the motor and somatosensory areas and enhances the inhibitory effect of limbic, vestibular, and orbital cortical areas. Facilitating effect was enhanced by electrostimulation of the motor area and reduced by the stimulation of other cortical areas. Following the coagulation of the NVL, the ascending afferent flow to the cortex seems to be reduced. This results in diminishing of the cortical neurones tone and readjusts the descending influences upon the NVL neurones activity.  相似文献   

16.
Gustatory discrimination testing shows that rats with an overtrained conditioned taste aversion (CTA) to isotonic LiCl stop salt intake after 1 to 2 licks at the LiCl spout and move to the adjacent water spout within 0.7 s. Activity of 526 neurones from the nucleus of the solitary tract, gustatory thalamus, gustatory cortex, lateral and ventromedial thalamus, and amygdala was recorded in naive or CTA trained rats during the above gustatory discrimination. Post-stimulus histograms (PSH) triggered by water or salt licks or by spout switching were plotted for single units. Population responses of various regions were obtained by integration of the statistically significant excitatory and inhibitory intervals in the individual PSHs. Lick related changes of unit activity were orserved in 52% and 65% of neurones in control and CTA trained rats, respectively. The CTA training increased the incidence of units in which salt licking influenced the activity less than water licking. Presentation of the aversive fluid induced inhibition of unit activity in the gustatory cortex, ventromedial hypothalamus, and amygdala and excitation in the lateral hypothalamus. The changes started 100 to 150 ms after spout switching and culminated 100 ms later. Activity of the solitary tract nucleus and gustatory thalamus was affected less consistently. The results indicate that the gustatory cortex, amygdala and hypothalamus participate in CTA retrieval but a more specific identification of the electrical correlates of memory readout and of drinking control was not possible.  相似文献   

17.
Previous studies have shown that neurotensin (NT) administered intracerebroventricularly (i.c.v.) to rats provokes an inhibition of intestinal propulsion linearly related to the log of administered doses. In the present study it is demonstrated that, in contrast to morphine, repeated i.c.v. administrations of NT (2.5 nmol/rat/day) did not result in tolerance to the intestinal effect. Naloxone (Nx) administered i.c.v. fully antagonized the intestinal inhibition of i.c.v. morphine, but did not significantly alter the NT effect. However, centrally administered thyrotropin-releasing hormone (TRH) inhibited NT-induced (but not morphine-induced) intestinal inhibition. Direct microinjections of NT into the periaqueductal gray matter (PAG) produced complete inhibition of intestinal propulsion when the microinjections were localized in the dorsal portion. Finally, subdiaphragmatic vagotomy totally abolished the inhibition induced by NT into the PAG, while morphine was not affected. Some considerations are put forward concerning the existence in the central nervous system of a peptidergic pathway modulating intestinal function.  相似文献   

18.
Antidromic responses of two callosal neurones to a local electrical stimulation of the rabbit sensorimotor cortex may be recorded simultaneously with one microelectrode in the homotopic cortical area. In such recording conditions the relative amplitude of extracellularly recorded action potentials of the two neurones is determined primarily by the distance between these neurones and the electrode's tip. In response to the stimulation of the symmetrical area transcallosal monosynaptic excitation of the callosal neurone may occur; two callosal neurones may exite monosynaptically one and the same recorded neurone. The results suggest the existence of clusters or columns, formed jointly by the bodies and terminals of callosal neurones; a functional interconnection between symmetrical clusters or columns may exist, in particular a positive feedback.  相似文献   

19.
R S Jones  A A Boulton 《Life sciences》1980,27(20):1849-1856
The actions of iontophoretically applied tryptamine (T) and 5-hydroxytryptamine (5-HT) were compared on single neurones in the rat somatosensory cortex. The firing rate of the vast majority of neurones tested was depressed by T. However, 5-HT excited and depressed approximately equal numbers of neurones. Depressant effects of 5-HT could be profoundly enhanced by a very weak concurrent application of T (0–10 nA) which itself did not alter the baseline cell firing rate. Excitatory responses to 5-HT were consistently reversed into depressant responses during weak applications of T. These observations could support a modulatory role for endogenous T in 5-HT-mediated transmission in the central nervous system (CNS).  相似文献   

20.
杨锋  林瑞锦 《生理学报》1993,45(6):519-527
应用多管微电极离子微电泳技术,观察微电沪锂盐对大鼠尾壳核痛反应神经元电活动的影响,实验结果表明,痛相关神经元在CPN头区内呈现均匀的分布,但痛兴奋神经元和痛抑制神经元的分布可能不均匀,其中PIN主要分布在CPN的头前区,PEN则较集中于CPN中心区。微电泳锂盐能抑制CPN头区内PEN的痛放活动,并使PIN放电活动增加;这种PEN与PIN锂盐的反应型式与它们对啡的反应型式呈正相关,提示锂盐的镇痛作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号