首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In European starlings, as in many other birds inhabiting higher latitudes, gonads develop in response to the increasing daylengths in early spring. Later in the year, however, the hypothalamo-pituitary-gonadal axis becomes refractory to the previously stimulatory long photoperiods and the gonads regress in summer. The present study addresses the question of when during the gonadal growth phase photorefractoriness is determined. A 13-h photoperiod induces testicular development and subsequent testicular regression associated with refractoriness in male starlings. An 11-h photoperiod, in contrast, induces only testicular development, and photorefractoriness never develops. When starlings were transferred to an 11-h photoperiod, either 12 or 25 days following exposure to a 13-h photoperiod, their testes developed to full size, but remained large to the end of the experiment, i.e. refractoriness did not develop. The same was even true of most birds in a third group that were transferred to an 11-h photoperiod after 46 days of the 13-h photoperiod, when gonads had developed to near maximal size. These data show that, in contrast to some other species of passerine birds, the onset of photorefractoriness does not become fixed before the testes have undergone considerable development, and that the photoperiodic conditions experienced at the end of the testicular growth phase are still effective in determining the precise time of onset of photorefractoriness. It is suggested that this peculiarity of the starling is related to the fact that its gonadal development begins rather early in spring and, hence, under much shorter photoperiods than the other species studied.  相似文献   

2.
Male European starlings(Sturnus vulgaris) were held for three consecutive photoperiod oscillations (ahemeral years) composed of 30-h day lengths, i.e., the daily light and dark each lasted three hours longer than under the natural daily photoperiod at latitude 38°N. These starlings had no gonad metamorphosis during the 45 actual months necessary to complete the three ahemeral photoperiod oscillations; nor did subsequent exposure to continuous illumination elicit gonad response. It is concluded that the daily duration of light and darkness (although certainly operant in controlling starling sexual cycles under temperate-zone photoperiod oscillations) is not the critical factor establishing a sexual cycle under the ahemeral regimen. Rather, it appears that this species must experience a daily duration of light of 12 hours or less (a definitive photoperiodic threshold) before photo-induction of a sexual cycle is possible.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

3.
Photoperiodic manipulation of young European starlings suggests that their reproductive physiology is incapable of responding to a short photoperiod until they are fully grown. This study aimed to determine whether the lack of response to a short photoperiod is reflected in the daily profile of plasma melatonin concentrations. Five-day-old starlings taken from nest boxes showed a significant (p < 0.0001) rhythm in plasma melatonin concentrations, with high values during night. In nestlings hand-reared from 5 days of age on a long photoperiod (LD 16:8), equivalent to natural photoperiod at the time, the amplitude of the daily rhythm in melatonin increased significantly (p < 0.01) with age until birds were fully grown (20 days old). In nestlings reared on a short photoperiod (LD 8:16), the daily melatonin profile remained almost identical to that of long photoperiod birds until they were fully grown. However, after 20 days old, the duration of elevated nighttime melatonin began to extend to encompass the entire period of darkness. In contrast, fully grown starlings transferred from a long to a short photoperiod had partially adapted to the short photoperiod after 5 days; by 10 days, the daily melatonin profile was identical to that of birds held chronically on a short photoperiod. Thus, consistent with responses of reproductive physiology, the pineal of young birds appears to be incapable of perceiving, or adapting to, a short photoperiod.  相似文献   

4.
Juvenile male European Starlings(Sturnus vulgaris) were maintained under discrete fixed daily photophases ranging from 1 to 11 h in duration. Treatment began on 20 December when all birds were reproductively quiescent, and continued until 14 June of the following year.In situ measurements of left testis widths at monthly intervals documented testicular width increases to levels associated with complete spermatogenesis in birds under all photoperiod regimens. Starlings maintained under the shortest and longest photoperiods required fewer days of treatment to achieve spermatogenic testes than did those under intermediate-length photoperiods. Data are consistent with the hypothesis that prolonged daily periods of darkness result in oscillations of a circadian timing system stimulating increased gonadotropin secretion and consequent testicular metamorphosis.  相似文献   

5.
Summary Pinealectomized and sham-operated European starlings were maintained for 16 months under a constant 12-h photoperiod and constant temperature conditions. In all birds, testicular width was measured at about monthly intervals and the onset and end of molt was determined. Shortly after the beginning of the experiment, the sham-operated birds went through a cycle of testicular growth and regression which was followed by a complete molt; subsequently most individuals initiated a second testicular cycle. Most of the pinealectomized birds, in contrast, failed to go through a second testicular cycle. Moreover, during the first cycle their testes regressed earlier than in the sham-operated birds and the subsequent molt was relatively advanced. In these respects the pinealectomized birds behaved like intact starlings under a 13-h photoperiod. Since pinealectomy probably changes the phase-relationship between circadian rhythms and the entraining light-dark cycle it is proposed that pinealectomy in the present experiment might have altered the phase-relationship between a circadian rhythm of photosensitivity and the light-dark cycle in such a way that the birds interpreted the 12-h photoperiod as a 13-h photoperiod.This work was supported by the Deutsche Forschungsgemeinschaft SPP Mechanismen biologischer Uhren.  相似文献   

6.
Summary In European starlings (Sturnus vulgaris) exposed in winter to photoperiods of 12 1/2 h or more, testes go through a cycle of growth and regression but then stay inactive for many months. Under a photoperiod of 12 h, in contrast, testes usually go through repeated circannual cycles. We have tested the hypothesis that the failure of starlings held under long photoperiods to initiate a second testicular cycle is a consequence of the fact that photorefractoriness is not broken under photoperiods longer than 12 h. The results of 2 experiments are consistent with this hypothesis: whereas the testes of starlings held continuously in a 13-h photoperiod or in continuous light, remained inactive after an initial testicular cycle, testicular growth was re-initiated after birds were exposed for 4 to 8 weeks to a short 8-h photoperiod.  相似文献   

7.
Summary In the European starling,Sturnus vulgaris, circannual rhythms in gonadal size, molt and other related functions persist only in photoperiods close to 12 h, but are absent in longer or shorter daylengths. To find out whether the arrhythmia seen in long photoperiods results from an arrest of the underlying clock system, three groups of male starlings were held for 10, 14, or 20 months in a 13 h photoperiod and then transferred to a 12 h photoperiod. A control group was held in the 13 h photoperiod throughout the experiment for 28 months. During the initial exposure to the 13 h photoperiod, all birds went through a gonadal cycle, followed by a complete molt. Subsequently, the control birds retained small testes to the end of the experiment and there was no further molt. In contrast, most of the experimental birds re-initiated a testicular cycle, following transfer to the 12 h photoperiod and molted after its completion. The latency between the transfer to the 12 h photoperiod and the onset of testicular growth was not significantly different among the three groups, indicating that the underlying circannual clock had been arrested in the 13 h photoperiod and restarted in the 12 h photoperiod. The pattern of the second testicular cycle did, however, differ among groups. Particularly its amplitude decreased from group 1 to group 3, suggesting that the capacity of the birds to respond to a 12 h photoperiod decreased with increasing duration of exposure to the 13 h photoperiod.Dedicated to Prof. Dr. C.S. Pittendrigh on the occasion of his seventieth birthday.  相似文献   

8.
We tested the hypothesis that adult male rufous-winged sparrows, Aimophila carpalis, exhibit relative photorefractoriness. This condition results in partial loss of sensitivity to photoperiod as a reproductive stimulus after prolonged exposure to long photoperiods and is similar to the mammalian condition called photoperiodic memory. Captive birds were exposed either to 8 h of light/16 h of dark per day (8L) or to 16L for 11 weeks and were then exposed either to 8L, 13L, 14L, or 16L. Testicular diameter, plasma luteinizing hormone (LH), and plasma prolactin (PRL) were measured to assess reproductive system activity in response to photostimulation. In free-living birds, testicular diameter, plasma LH, and PRL were compared in birds caught in September in a year when birds were breeding and in a year when birds were not breeding to further evaluate the role of PRL in the termination of seasonal breeding. Testes completely developed after transfer from 8L to 14L or to 16L and partially developed after transfer from 8L to 13L. However, after 11 weeks of 16L exposure, transfer to 14L caused partial regression and transfer to 13L caused complete regression of the testes. Plasma LH increased in all birds that were transferred from 8L to a longer photoperiod. PRL showed a weak response to longer photoperiod treatment and was elevated in birds after chronic 16L exposure in comparison to birds exposed to chronic 8L. These data indicate that male rufous-winged sparrows lose sensitivity to photoperiod after long photoperiod exposure consistent with the relative photorefractoriness and photoperiodic memory models. Lower PRL in birds that developed testes on 13L and 14L compared to birds that regressed testes on 13L and 14L are consistent with the hypothesis that PRL regulates relative photorefractoriness. However, PRL does not appear to regulate interannual differences in the timing of testicular regression.  相似文献   

9.
Intact and castrated male European starlings were held for about 2 years in a constant 12-hr photoperiod and constant temperature conditions. At 1- to 2-month intervals, testicular width was measured by laparotomy, and blood samples were taken for analysis of plasma luteinizing hormone (LH). Most of the control birds went through at least one circannual cycle of testicular width and plasma LH concentration. In the castrates, a similar proportion of birds went through circannual LH cycles with periods indistinguishable from those of the controls. It is concluded that the testes and their hormones are not essential components of the mechanism that generates circannual gonadal cycles in male European starlings.  相似文献   

10.

Background

In many birds, day length (=photoperiod) regulates reproductive cycle. The photoperiodic environment varies between different seasons and latitudes. As a consequence, species at different latitudes may have evolved separate photoperiodic strategies or modified them as per their adaptive need. We studied this using house sparrow as a model since it is found worldwide and is widely investigated. In particular, we examined whether photoperiodism in house sparrows (Passer domesticus) at 27°N, 81°E shared features with those exhibited by its conspecifics at high latitudes.

Results

Initial experiment described in the wild and captive conditions the gonad development and molt (only in captives) cycles over a 12-month period. Both male and female sparrows had similar seasonal cycles, linked with annual variations in day length; this suggested that seasonal reproduction in house sparrows was under the photoperiodic control. However, a slower testis and attenuated follicular growth among captives indicated that other (supplementary) factors are also involved in controlling the reproductive cycle. Next experiment examined if sparrows underwent seasonal variations in their response to stimulatory effects of long day lengths. When birds were transferred every month over a period of 1 year to 16 hours light:8 hours darkness (16L:8D) for 17–26 weeks, there was indeed a time-of-year effect on the growth-regression cycle of gonads. The final experiment investigated response of house sparrows to a variety of light-dark (LD) cycles. In the first set, sparrows were exposed for 31 weeks to photoperiods that were close to what they receive in between the period from sunrise to sunset at this latitude: 9L:15D (close to shortest day length in December), 12L:12D (equinox, in March and September) 15L:9D (close to longest day length in June). They underwent testicular growth and regression and molt in 12L and 15L photoperiods, but not in 9L photoperiod. In the second set, sparrows were exposed for 17 weeks to photoperiods with light periods extending to different duration of the daily photosensitivity rhythm (e.g. 2L:22D, 6L:18D, 10L:14D, 14L:10D, 18L:6D and 22L:2D). Interestingly, a slow and small testicular response occurred under 2L and 10L photoperiods; 6L:18D was non-inductive. On the other hand, 14L, 18L and 22L photoperiods produced testicular growth and subsequent regression response as is typical of a long day photostimulation.

Conclusion

Subtropical house sparrows exhibit photoperiodic responses similar to that is reported for its population living at high latitudes. This may suggest the conservation of the photoperiodic control mechanisms in birds evolved over a long period of time, as a physiological strategy in a temporally changing environment ensuring reproduction at the best suited time of the year.  相似文献   

11.
To examine the importance of the inductive light period of a skeleton photoperiod in relation to the endogenous circadian rhythm of photoinducibility mediating photoperiodic induction, P. domesticus were exposed for 28 weeks to a series of skeleton photoperiods, viz. 6L:4D:1L:13D, 6L:6D:1L:11D. 6L:8D:1L:9D and 6L:14D:1L:3D. The inductive effects of 1 hr light pulse at night varied depending on the time of its placement. To compare the inductive effects of complete and its corresponding skeleton photoperiods, birds in the second experiment were subjected for 20 weeks to 12L:12D and 6L:5D:1L:12D given daily or interposed on alternate days with constant darkness (12L:12D/DD and 6L:5D:1L:12D/DD). There was a difference in the rate and magnitude of response between the complete and skeleton photoperiods. It appears that the subtropical house sparrow uses photoperiodic strategy in regulation of its seasonal testicular responses similar to that is reported for its temperate population.  相似文献   

12.
The objective of this work was to define precisely the response curve for photoinduced luteinizing hormone (LH) release in feed-restricted meat-type (broiler) breeder females and to compare it with the photoperiodic response curve for advance in age at first egg (AFE). Birds with a mean body weight of 2.0kg at 20 weeks of age were transferred from an 8 to a 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 14 or 18-h photoperiod; change in plasma LH was measured 4d after photostimulation and subsequent individual AFE recorded. The first significant increase in LH secretion was seen in birds transferred to an 11.5-h photoperiod, but no further significant increases in LH were observed in birds transferred to longer photoperiods. A photoperiodic response curve based on a meta-analysis of changes in photoinduced LH secretion observed in this study and data from an earlier experiment using dwarf broiler breeders indicated a critical daylength of about 9.5h and a saturation daylength of approximately 13h. Similarly, the first significant advance in AFE occurred in birds transferred to an 11-h photoperiod, but with no further significant increases seen in birds transferred to photoperiods >11h. A response curve for photoinduced advances in AFE was produced by meta-analysis using data from the present study and from an earlier investigation involving fewer, more widely spaced photoperiods. It is concluded, in female broiler breeders, that the photoperiodic response curves for photoinduced LH release and AFE are similar, with the point at which the responses begin to rise steeply (classical critical daylength) occurring at 9.5h and the asymptote (classical saturation daylength) at 13h. Functionally, however, the minimum photoperiod to achieve a significant change in either LH secretion or advance in AFE is between 11 and 11.5h.  相似文献   

13.
Vinod  Kumar P. D. Tewary 《Ibis》1983,125(3):305-312
Little is known about the effects of photoperiod on avian migrants that visit southeast Asia. In this paper, we report experiments performed on an emberizid finch, the Black-headed Bunting Emberiza melanocephala , to investigate its photoperiodic responses under artificial photoperiods, and continuous light and darkness.
Two series of experiments were performed with the photosensitive male birds. In the first series, different groups were exposed to seven different artificial photoperiods: 3L/21D, 6L/18D, 8L./16D, 11L/13D, 12L/12D, 15L/9D and 20L/4D, for 30 days. They were weighed and laparotomized at the beginning and end of the experiments. The birds responded to 12L/12D, 15L/9D and 20L/4D, but not to 3L/21D, 6L/18D, 8L/16D and 11L/13D. In the second series, photosensitive birds were placed under continuous light (LL) and dark (DD) conditions for 130 and 90 days. Periodic observations indicated that testicular growth and fattening followed by involution and fat-depletion had resulted in birds under LL, indicating the onset of photorefractoriness, while DD had no effect either on gonads or fattening in the buntings.
Our results demonstrate that light stimulation is a prerequisite to reproductive and metabolic activities (pre-migratory and migratory changes, fattening and weight gain) in the Black-headed Bunting, which has a photoperiodic threshold to these events at between 11 and 12 h daily photoperiods.  相似文献   

14.
We investigated reproductive regulation in male Rufous-winged Sparrows, Aimophila carpalis, a Sonoran Desert passerine that breeds after irregular summer rains. Field and captive data demonstrate that increased photoperiod stimulates testicular development in March and maintains it until early September. Free-living birds caught in July and placed on captive long days (16L: 8D) maintained developed testes for up to 7 months, and free-living birds caught in September, during testicular regression, redeveloped testes when placed on captive long days, indicating that these birds were still photosensitive. Captive birds on long days maintained testicular development when exposed to temperatures mimicking those occurring during regression in free-living birds. In free-living birds, testicular development was observed during spring and summer, but unless this was associated with rainfall, breeding (indicated by juveniles) did not occur. Large increases in plasma luteinizing hormone (LH) in free-living males were correlated with heavy rainfall in July/August, when the birds bred, and in November, when they did not breed. In captive birds, plasma LH concentrations were unresponsive to photoperiodic changes, but may have responded to social cues. Plasma prolactin concentrations were directly correlated with photoperiod in free-living birds, but an effect of photoperiod on prolactin secretion was not seen in captive birds. It is concluded that male Rufous-winged Sparrows use long photoperiods to stimulate and maintain testicular development, but exposure to long photoperiods does not terminate breeding by inducing absolute photorefractoriness. The specific timing of reproductive behaviors is apparently determined by elevated plasma LH coinciding with long day stimulated gonad development.  相似文献   

15.
There are two effects of long day length on reproductive responses in birds, one is the photoinduction of gonadal growth and maturation and the other is the induction of gonadal regression and photorefractoriness. Although it is likely that the same photoreceptors are involved in the photoinduction of gonadal growth and the onset and maintenance of photorefractoriness. and so the influence of wavelength should be similar, this has not been investigated. Therefore, we investigated the influence of light wavelength on reproductive photorefractoriness in the migratory male blackheaded bunting held under long photoperiods. In mid May, when photoperiod was approximately 14L:10D (14 hours light:10 hours darkness), eight groups of sexually mature birds were moved indoors on an artificial photoperiod of 14L:10D (L - 450 lux. D - 0 lux). Then after 3 weeks, for six groups, a 4-h light period in the morning (zt 0-4; zt 0 [zeitgeber time 0] refers to the beginning of lights-on period) or in the evening (zt 10-14) was substituted with green (428 nm), red (654 nm) or white light at 16 +/- 2 lux intensity. Of the remaining two groups, one was maintained on 14L: 10D and the other transferred to 10L:14D: these served as controls. At the end of 4 weeks, all birds were found to have undergone testicular regression, irrespective of LD cycle they were exposed to. When these gonadally regressed birds were subjected to 16L:8D for another 4 weeks, to test their responsiveness to the stimulatory effects of long day lengths, only those exposed to 10L:14D and 14L:10D with a 4-h green light period showed testicular regrowth. On the other hand, birds exposed to 14L:10D with a 4-h white or red light period remained fully regressed, similar to 14L:10D controls. Except for some individual difference, there was no difference in response between the groups that received a 4-h light period in the morning and that received it in the evening. These results suggest that the wavelengths of light influence induction of buntings from the photosensitive state into the photorefractory state. Whereas the short light wavelengths facilitated recovery from the photorefractoriness, the long light wavelengths were more effective in maintaining the photorefractoriness.  相似文献   

16.
Male rose-ringed parakeets (Psittacula krameri) were transferred to a long photoperiod (LP; LD 16:8) or a short photoperiod (SP; LD 8:16) for 45 or 90 days on four dates corresponding to the beginnings of different reproductive phases in an annual testicular cycle, and testicular responsiveness was evaluated by comparison with the testicular volume, weight, seminiferous tubular diameter, and germ cell profiles of birds in a natural photoperiod (NP). Exposure of birds to LP during the progressive phase (November) led to precocious maturation of testes after 45 days, but induced regression at 90 days. After showing retarded gametogenic functions at 45 days, parallel (November) SP birds exhibited an accelerated rate of germ cell formation at day 90. During the prebreeding phase (January), there were no remarkable differences in any features of testes among NP. LP, and SP birds at 45 days, but gonadal involution in LP parakeets and active spermatogenesis in SP birds occurred after 90 days. The testes did not show any response to LP or SP for 45 and 90 days when the birds were transferred to altered photoperiods during the breeding (March) and preparatory (June) phases, indicating that the parakeets were photorefractory for at least 6 months (March through September). The results also suggest that initiation and termination of seasonal gametogenic activity in parakeets are possibly functions of endogenous rhythmicity or extraphotoperiodic environmental factors. Duration of light may have certain influences on the attainment of annual peak in spermatogenesis, but in all probability the species has a low photoperiod threshold for induction of testicular growth.  相似文献   

17.
The rate of reproductive development in juvenile male Siberian hamsters is strongly influenced by daylength (photoperiod). Recent studies indicate that reception of photoperiodic cues begins during fetal life. The present experiments yielded a further demonstration that developing male Siberian hamsters receive information about the photoperiod to which their mother is exposed during pregnancy. The possibility that photoperiodic information is transmitted from mother to young after birth was investigated by cross-fostering young gestated on 12L and 16L to mothers from the other photoperiod. Litters were cross-fostered on the day of birth and then were transferred, along with their foster mothers, to 14L. We found no influence of the mother after birth, indicating that transmission of photoperiodic information from mother to young must occur during gestation. To determine if the pineal gland of the mother is required for this response, adult females were pinealectomized or sham-operated and paired with intact males in 12L, 14L, or 16L. After parturition parents and offspring were exposed to 14L. The influence of prenatal photoperiod on postnatal testicular development in 14L was blocked by pinealectomy of the mother. Postnatal testicular development was retarded in offspring that experienced a photoperiod transfer from either 15L to 14L or 8L to 12L at birth. In contrast, the inhibitory effect of a transfer from 16L to 14L at birth was abolished when juvenile males were exposed to a single long photoperiod (16.3 h light) at age 17-21 days and then were returned to 14L.  相似文献   

18.
The duration of nocturnal pineal melatonin secretion transduces effects of day length (DL) on the neuroendocrine axis of photoperiodic rodents. Long DLs support reproduction, and short DLs induce testicular regression, followed several months later by spontaneous recrudescence; gonadal regrowth is thought to reflect development of tissue refractoriness to melatonin. In most photoperiodic species, pinealectomy does not diminish reproductive competence in long DLs. Turkish hamsters (Mesocricetus brandti) deviate from this norm: elimination of melatonin secretion in long-day males by pinealectomy or constant light treatment induces testicular regression and subsequently recrudescence; the time course of these gonadal transitions is similar to that observed in males transferred from long to short DLs. In the present study, long-day Turkish hamsters that underwent testicular regression and recrudescence in constant light subsequently were completely unresponsive to the antigonadal effects of short DLs. Other hamsters that manifested testicular regression and recrudescence in short DLs were unresponsive to the antigonadal effects of pinealectomy or constant light. Long-term suppression of melatonin secretion induces a physiological state in Turkish hamsters similar or identical to the neuroendocrine refractoriness produced by short-day melatonin signals (i.e., neural refractoriness to melatonin develops in the absence of circulating melatonin secretion). A melatonin-independent interval timer, which would remain operative in the absence of melatonin during hibernation, may determine the onset of testicular recrudescence in the spring. In this respect, Turkish hamsters differ from most other photoperiodic rodents.  相似文献   

19.
European starlings (Sturnus vulgaris ) maintained under chronic 12L:12D exhibit testicular cycles with a periodicity of 9–10 months. These circannual testicular cycles incorporate all of the physiologically distinct phases observed during gonadal cycles in starlings under temperate-zone photoperiods. Starlings maintained under chronic 6L-18D also undergo testicular cycles but these cycles: (a) have a relatively short periodicity (about 6 months); (b) include periods of testicular involution, though not to the minimal quiescent level for this species; and (c) do not include the physiologically distinct photorefractory phase separating testicular cycles in starlings under chronic 12L:12D and under temperate-zone photoperiods. While it is possible that testicular cycles in starlings under certain daily light regimens of fixed duration are a function of an endogenous circannual reproductive rhythm, we believe that the testicular cycles generated under both 12L:12D and 6L:18D are the product of gonadotropin secretion rates controlled by circadian (not circannual) oscillations periodically entrained by these chronic photoperiods.  相似文献   

20.
In the present study, we asked the question whether physiological responses to day length of migratory redheaded bunting (Emberiza bruniceps) and nonmigratory Indian weaver bird (Ploceus philippinus) are mediated by the daily rhythm of melatonin. Melatonin was given either by injection at certain times of the day or as an implant. In series I experiments on the redheaded bunting, melatonin was administered by subcutaneous injections daily at zeitgeber time (ZT) 4 (morning) or ZT10 (evening) and by silastic capsules in photosensitive unstimulated buntings that were held in natural day lengths (NDL) at 27 degrees N beginning from mid February, and in artificial day lengths (ADL, 12L:12D and 14L:10D). Melatonin did not affect the photoperiod-induced cycles of gain and loss in body mass and testicular growth-involution, but there was an effect on temporal phasing of the growth-involution cycle of testes in some groups. For example, the rate of testicular growth and development was faster in birds that received melatonin injection at ZT4 in NDL, and was slower in birds that carried melatonin implants both in NDL and ADL. In series II experiments on Indian weaver birds, melatonin was given in silastic capsules in the first week of September when they still had large gonads. Birds were exposed for 12 weeks to short day length (8L:16D; group 1), to long day length (eight weeks of 16L:8D and four weeks of 18L:6D; group 2), or to both short and long day lengths (four weeks each of 8L:16D, 16L:8D, and 18L:6D; groups 3 and 4). Whereas groups 1 to 3 carried melatonin or empty implant from the beginning, group 4 received one after four weeks. All birds underwent testicular regression during the first four weeks irrespective of the photoperiod they were exposed to or the implant they carried in, and there was a slight re-initiation of testis growth in some birds during the next eight weeks of long day lengths. However, with the exception of group 2, there was no difference in mean testis volume during the period of experiment between the melatonin- and empty-implant birds. The data on androgen-dependent beak color also supported the observations on testes. Together, these results do not support the idea that the daily rhythm of melatonin is involved in the photoperiodic time measurement in birds. However, there may still be a role of melatonin in temporal phasing of the annual reproductive cycle in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号