首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid-state 13C NMR spectra of the M photocycle intermediate of bacteriorhodopsin (bR) have been obtained from purple membrane regenerated with retinal specifically 13C labeled at positions 5, 12, 13, 14, and 15. The M intermediate was trapped at -40 degrees C and pH = 9.5-10.0 in either 100 mM NaCl [M (NaCl)] or 500 mM guanidine hydrochloride [M (Gdn-HCl)]. The 13C-12 chemical shift at 125.8 ppm in M (NaCl) and 128.1 ppm in M (Gdn-HCl) indicates that the C13 = C14 double bond has a cis configuration, while the 13C-13 chemical shift at 146.7 ppm in M (NaCl) and 145.7 ppm in M (Gdn-HCl) demonstrates that the Schiff base is unprotonated. The principal values of the chemical shift tensor of the 13C-5 resonance in both M (NaCl) and M (Gdn-HCl) are consistent with a 6-s-trans structure and a negative protein charge localized near C-5 as was observed in dark-adapted bR. The approximately 5 ppm upfield shift of the 13C-5 M resonance (approximately 140 ppm) relative to 13C-5 bR568 and bR548 (approximately 145 ppm) is attributed to an unprotonated Schiff base in the M chromophore. Of particular interest in this study were the results obtained from 13C-14 M. In M (NaCl), a dramatic upfield shift was observed for the 13C-14 resonance (115.2 ppm) relative to unprotonated Schiff base model compounds (approximately 128 ppm). In contrast, in M (Gdn-HCl) the 13C-14 resonance was observed at 125.7 ppm. The different 13C-14 chemical shifts in these two M preparations may be explained by different C = N configurations of the retinal-lysine Schiff base linkage, namely, syn in NaCl and anti in guanidine hydrochloride.  相似文献   

2.
Our previous solid-state 13C NMR studies on bR have been directed at characterizing the structure and protein environment of the retinal chromophore in bR568 and bR548, the two components of the dark-adapted protein. In this paper, we extend these studies by presenting solid-state NMR spectra of light-adapted bR (bR568) and examining in more detail the chemical shift anisotropy of the retinal resonances near the ionone ring and Schiff base. Magic angle spinning (MAS) 13C NMR spectra were obtained of bR568, regenerated with retinal specifically 13C labeled at positions 12-15, which allowed assignment of the resonances observed in the dark-adapted bR spectrum. Of particular interest are the assignments of the 13C-13 and 13C-15 resonances. The 13C-15 chemical resonance for bR568 (160.0 ppm) is upfield of the 13C-15 resonance for bR548 (163.3 ppm). This difference is attributed to a weaker interaction between the Schiff base and its associated counterion in bR568. The 13C-13 chemical shift for bR568 (164.8 ppm) is close to that of the all-trans-retinal protonated Schiff base (PSB) model compound (approximately 162 ppm), while the 13C-13 resonance for bR548 (168.7 ppm) is approximately 7 ppm downfield of that of the 13-cis PSB model compound. The difference in the 13C-13 chemical shift between bR568 and bR548 is opposite that expected from the corresponding 15N chemical shifts of the Schiff base nitrogen and may be due to conformational distortion of the chromophore in the C13 = C14-C15 bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Previous solid state 13C-NMR studies of bacteriorhodopsin (bR) have inferred the C = N configuration of the retinal-lysine Schiff base linkage from the [14-13C]retinal chemical shift (1-3). Here we verify the interpretation of the [14-13C]-retinal data using the [epsilon-13C]lysine 216 resonance. The epsilon-Lys-216 chemical shifts in bR555 (48 ppm) and bR568 (53 ppm) are consistent with a C = N isomerization from syn in bR555 to anti in bR568. The M photointermediate was trapped at pH 10.0 and low temperatures by illumination of samples containing either 0.5 M guanidine-HCl or 0.1 M NaCl. In both preparations, the [epsilon-13C]Lys-216 resonance of M is 6 ppm downfield from that of bR568. This shift is attributed to deprotonation of the Schiff base nitrogen and is consistent with the idea that the M intermediate contains a C = N anti chromophore. M is the only intermediate trapped in the presence of 0.5 M guanidine-HCl, whereas a second species, X, is trapped in the presence of 0.1 M NaCl. The [epsilon-13C]Lys-216 resonance of X is coincident with the signal for bR568, indicating that X is either C = N anti and protonated or C = N syn and deprotonated.  相似文献   

4.
By elevating the pH to 9.5 in 3 M KCl, the concentration of the N intermediate in the bacteriorhodopsin photocycle has been enhanced, and time-resolved resonance Raman spectra of this intermediate have been obtained. Kinetic Raman measurements show that N appears with a half-time of 4 +/- 2 ms, which agrees satisfactorily with our measured decay time of the M412 intermediate (2 +/- 1 ms). This argues that M412 decays directly to N in the light-adapted photocycle. The configuration of the chromophore about the C13 = C14 bond was examined by regenerating the protein with [12,14-2H]retinal. The coupled C12-2H + C14-2H rock at 946 cm-1 demonstrates that the chromophore in N is 13-cis. The shift of the 1642-cm-1 Schiff base stretching mode to 1618 cm-1 in D2O indicates that the Schiff base linkage to the protein is protonated. The insensitivity of the 1168-cm-1 C14-C15 stretching mode to N-deuteriation establishes a C = N anti (trans) Schiff base configuration. The high frequency of the C14-C15 stretching mode as well as the frequency of the 966-cm-1 C14-2H-C15-2H rocking mode shows that the chromophore is 14-s-trans. Thus, N contains a 13-cis, 14-s-trans, 15-anti protonated retinal Schiff base.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Sensory rhodopsin I (SR-I) is a retinal-containing pigment which functions as a phototaxis receptor in Halobacterium halobium. We have obtained resonance Raman vibrational spectra of the native membrane-bound form of SR587 and used these data to determine the structure of its retinal prosthetic group. The similar frequencies and intensities of the skeletal fingerprint modes in SR587, bacteriorhodopsin (BR568), and halorhodopsin (HR578) as well as the position of the dideuterio rocking mode when SR-I is regenerated with 12,14-D2 retinal (915 cm-1) demonstrate that the retinal chromophore has an all-trans configuration. The shift of the C = N stretching mode from 1628 cm-1 in H2O to 1620 cm-1 in D2O demonstrates that the chromophore in SR587 is bound to the protein by a protonated Schiff base linkage. The small shift of the 1195 cm-1 C14-C15 stretching mode in D2O establishes that the protonated Schiff base bond has an anti configuration. The low value of the Schiff base stretching frequency together with its small 8 cm-1 shift in D2O indicates that the Schiff base proton is weakly hydrogen bonded to its protein counterion. This suggests that the red shift in the absorption maximum of SR-I (587 nm) compared with HR (578 nm) and BR (568 nm) is due to a reduction of the electrostatic interaction between the protonated Schiff base group and its protein counterion.  相似文献   

6.
Solid-state 13C magic angle sample spinning NMR spectroscopy has been used to study the ionone ring portion of the chromophore of bacteriorhodopsin. Spectra were obtained from fully hydrated samples regenerated with retinals 13C labeled at positions C-5, C-6, C-7, C-8, and C-18 and from lyophilized samples regenerated with retinals labeled at C-9 and C-13. C-15-labeled samples were studied in both lyophilized and hydrated forms. Three independent NMR parameters (the downfield element of the C-5 chemical shift tensor, the C-8 isotropic chemical shift, and the C-18 longitudinal relaxation time) indicate that the chromophore has a 6-s-trans conformation in the protein, in contrast to the 6-s-cis conformation that is energetically favored for retinoids in solution. We also observe an additional 27 ppm downfield shift in the middle element of the C-5 shift tensor, which provides support for the existence of a negatively charged protein residue near C-5. Evidence for a positive charge near C-7, possibly the counterion for the negative charge, is also discussed. On the basis of these results, we present a new model for the retinal binding site, which has important implications for the mechanism of the "opsin shift" observed in bacteriorhodopsin.  相似文献   

7.
Vogel R  Lüdeke S  Radu I  Siebert F  Sheves M 《Biochemistry》2004,43(31):10255-10264
Meta III is an inactive intermediate thermally formed following light activation of the visual pigment rhodopsin. It is produced from the Meta I/Meta II photoproduct equilibrium of rhodopsin by a thermal isomerization of the protonated Schiff base C=N bond of Meta I, and its chromophore configuration is therefore all-trans 15-syn. In contrast to the dark state of rhodopsin, which catalyzes exclusively the cis to trans isomerization of the C11=C12 bond of its 11-cis 15-anti chromophore, Meta III does not acquire this photoreaction specificity. Instead, it allows for light-dependent syn to anti isomerization of the C15=N bond of the protonated Schiff base, yielding Meta II, and for trans to cis isomerizations of C11=C12 and C9=C10 of the retinal polyene, as shown by FTIR spectroscopy. The 11-cis and 9-cis 15-syn isomers produced by the latter two reactions are not stable, decaying on the time scale of few seconds to dark state rhodopsin and isorhodopsin by thermal C15=N isomerization, as indicated by time-resolved FTIR methods. Flash photolysis of Meta III produces therefore Meta II, dark state rhodopsin, and isorhodopsin. Under continuous illumination, the latter two (or its unstable precursors) are converted as well to Meta II by presumably two different mechanisms.  相似文献   

8.
Using the baculovirus/Sf9 cell expression system, we have incorporated 99% 15N-enriched [alpha,epsilon-15N2]-L-lysine into the rod visual pigment rhodopsin. We have subsequently investigated the protonated Schiff base (pSB) linkage in the [alpha, epsilon-15N2]Lys-rhodopsin with cross-polarization magic angle spinning (CP/MAS) 15N NMR. The Schiff base (SB) 15N in [alpha, epsilon-15N2]Lys-rhodopsin resonates with an isotropic shift sigmaI of 155.9 ppm, relative to 5.6 M 15NH4Cl. This suggests that the SB in rhodopsin is protonated and stabilized by a complex counterion. The 15N shifts of retinal SBs correlate with the energy difference between the ground and excited states and the frequency of maximum visible absorbance, numax, associated with the pi-pi transition of the polyene chromophore. Experimental modeling of the relation between the numax and the size of the counterion with a set of pSBs provides strong evidence that the charged chromophore in rhodopsin is stabilized by a counterion with an estimated effective center-center distance (deff) between the counterion and the pSB of 0.43 +/- 0.01 nm. While selected prokaryotic proteins and complexes have been labeled before, this is the first time to our knowledge that a 15N-labeled eukaryotic membrane protein has been generated in sufficient amount for such NMR investigations.  相似文献   

9.
Fourier-transform infrared difference spectroscopy has been used to detect the vibrational modes in the chromophore and protein that change in position or intensity between rhodopsin and the photoproducts formed at low temperature (70 K), bathorhodopsin and isorhodopsin. A method has been developed to obtain infrared difference spectra between rhodopsin and bathorhodopsin, bathorhodopsin and isorhodopsin, and rhodopsin and isorhodopsin. To aid in the identification of the vibrational modes, we performed experiments on deuterated and hydrated films of native rod outer segments and rod outer segments regenerated with either retinal containing 13C at carbon 15 or 15-deuterioretinal. Our infrared measurements provide independent verification of the resonance Raman result that the retinal in bathorhodopsin is distorted all-trans. The positions of the C = N stretch in the deuterated pigment and the deuterated pigments regenerated with 11-cis-15-deuterioretinal or 11-cis-retinal containing 13C at carbon 15 are indicative that the Schiff-base linkage is protonated in rhodopsin, bathorhodopsin, and isorhodopsin. Furthermore, the C = N stretching frequency occurs at the same position in all three species. The data indicate that the protonated Schiff base has a C = N trans conformation in all three species. Finally, we present evidence that, even in these early stages of the rhodopsin photosequence, changes are occurring in the opsin and perhaps the associated lipids.  相似文献   

10.
A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin   总被引:3,自引:0,他引:3  
H Deng  R H Callender 《Biochemistry》1987,26(23):7418-7426
We have obtained the resonance Raman spectra of bovine rhodopsin, bathorhodopsin, and isorhodopsin for a series of isotopically labeled retinal chromophores. The specific substitutions are at retinal's protonated Schiff base moiety and include -HC = NH+-, -HC = ND+-, -H13C = NH+-, and -H13C = ND+-. Apart from the doubly labeled retinal, we find that the protonated Schiff base frequency is the same, within experimental error, for both rhodopsin and bathorhodopsin for all the substitutions measured here and elsewhere. We develop a force field that accurately fits the observed ethylenic (C = C) and protonated Schiff base stretching frequencies of rhodopsin and labeled derivatives. Using MINDO/3 quantum mechanical procedures, we investigate the response of this force field, and the ethylenic and Schiff base stretching frequencies, to the placement of charges close to retinal's Schiff base moiety. Specifically, we find that the Schiff base frequency should be measurably affected by a 3.0-4.5-A movement of a negatively charged counterion from the positively charged protonated Schiff base moiety. That there is no experimentally discernible difference in the Schiff base frequency between rhodopsin and bathorhodopsin suggests that models for the efficient conversion of light to chemical energy in the rhodopsin to bathorhodopsin photoconversion based solely on salt bridge separation of the protonated Schiff base and its counterion are probably incorrect. We discuss various alternative models and the role of electrostatics in the rhodopsin to bathorhodopsin primary process.  相似文献   

11.
Solid-state 13C magic-angle spinning NMR spectroscopy has been employed to study the conformation of the 11-cis-retinylidene Schiff base chromophore in bovine rhodopsin. Spectra were obtained from lyophilized samples of bovine rhodopsin selectively 13C-labeled at position C-5 or C-12 of the retinyl moiety, and reconstituted in the fully saturated branched-chain phospholipid diphytanoyl glycerophosphocholine. Comparison of the NMR parameters for carbon C-5 presented in this paper with those published for retinyl Schiff base model compounds and bacteriorhodopsin by Harbison and coworkers [Harbison et al. (1985) Biochemistry 24, 6955-6962], indicate that in bovine rhodopsin the C-6-C-7 single bond has the unperturbed cis conformation. This is in contrast to the 6-S-trans conformation found in bacteriorhodopsin. The NMR parameters for bovine [12-13C]rhodopsin present evidence for the presence of a negative charge interacting with the retinyl moiety near C-12, in agreement with the model for the opsin shift presented by Honig and Nakanishi and coworkers [Kakitani et al. (1985) Photochem. Photobiol. 41, 471-479].  相似文献   

12.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

13.
Bovine rhodopsin was bleached and regenerated with 7,9-dicis-retinal to form 7,9-dicis-rhodopsin, which was purified on a concanavalin A affinity column. The absorption maximum of the 7,9-dicis pigment is 453 nm, giving an opsin shift of 1600 cm-1 compared to 2500 cm-1 for 11-cis-rhodopsin and 2400 cm-1 for 9-cis-rhodopsin. Rapid-flow resonance Raman spectra have been obtained of 7,9-dicis-rhodopsin in H2O and D2O at room temperature. The shift of the 1654-cm-1 C = N stretch to 1627 cm-1 in D2O demonstrates that the Schiff base nitrogen is protonated. The absence of any shift in the 1201-cm-1 mode, which is assigned as the C14-C15 stretch, or of any other C-C stretching modes in D2O indicates that the Schiff base C = N configuration is trans (anti). Assuming that the cyclohexenyl ring binds with the same orientation in 7,9-dicis-, 9-cis-, and 11-cis-rhodopsins, the presence of two cis bonds requires that the N-H bond of the 7,9-dicis chromophore points in the opposite direction from that in the 9-cis or 11-cis pigment. However, the Schiff base C = NH+ stretching frequency and its D2O shift in 7,9-dicis-rhodopsin are very similar to those in 11-cis- and 9-cis-rhodopsin, indicating that the Schiff base electrostatic/hydrogen-bonding environments are effectively the same. The C = N trans (anti) Schiff base geometry of 7,9-dicis-rhodopsin and the insensitivity of its Schiff base vibrational properties to orientation are rationalized by examining the binding site specificity with molecular modeling.  相似文献   

14.
Magic-angle spinning NMR spectra have been obtained of the bathorhodopsin photointermediate trapped at low temperature (less than 130 K) by using isorhodopsin samples regenerated with retinal specifically 13C-labeled at positions 8, 10, 11, 12, 13, 14, and 15. Comparison of the chemical shifts of the bathorhodopsin resonances with those of an all-trans-retinal protonated Schiff base (PSB) chloride salt show the largest difference (6.2 ppm) at position 13 of the protein-bound retinal. Small differences in chemical shift between bathorhodopsin and the all-trans PSB model compound are also observed at positions 10, 11, and 12. The effects are almost equal in magnitude to those previously observed in rhodopsin and isorhodopsin. Consequently, the energy stored in the primary photoproduct bathorhodopsin does not give rise to any substantial change in the average electron density at the labeled positions. The data indicate that the electronic and structural properties of the protein environment are similar to those in rhodopsin and isorhodopsin. In particular, a previously proposed perturbation near position 13 of the retinal appears not to change its position significantly with respect to the chromophore upon isomerization. The data effectively exclude charge separation between the chromophore and a protein residue as the main mechanism for energy storage in the primary photoproduct and argue that the light energy is stored in the form of distortions of the bathorhodopsin chromophore.  相似文献   

15.
11-Z-[8,9,10,11,12,13,14,15,19,20-(13)C10]Retinal prepared by total synthesis is reconstituted with opsin to form rhodopsin in the natural lipid membrane environment. The 13C shifts are assigned with magic angle spinning NMR dipolar correlation spectroscopy in a single experiment and compared with data of singly labeled retinylidene ligands in detergent-solubilized rhodopsin. The use of multispin labeling in combination with 2-D correlation spectroscopy improves the relative accuracy of the shift measurements. We have used the chemical shift data to analyze the electronic structure of the retinylidene ligand at three levels of understanding: (i) by specifying interactions between the 13C-labeled ligand and the G-protein-coupled receptor target, (ii) by making a charge assessment of the protonation of the Schiff base in rhodopsin, and (iii) by evaluating the total charge on the carbons of the retinylidene chromophore. In this way it is shown that a conjugation defect is the predominant ground-state property governing the molecular electronics of the retinylidene chromophore in rhodopsin. The cumulative chemical shifts at the odd-numbered carbons (Delta(sigma)odd) of 11-Z-protonated Schiff base models relative to the unprotonated Schiff base can be used to measure the extent of delocalization of positive charge into the polyene. For a series of 11-Z-protonated Schiff base models and rhodopsin, Delta(sigma)odd appears to correlate linearly with the frequency of maximum visible absorption. Since rhodopsin has the largest value of Delta(sigma)odd, the data contribute to existing and converging spectroscopic evidence for a complex counterion stabilizing the protonated Schiff base in the binding pocket.  相似文献   

16.
The analysis of the vibrational spectrum of the retinal chromophore in bacteriorhodopsin with isotopic derivatives provides a powerful "structural dictionary" for the translation of vibrational frequencies and intensities into structural information. Of importance for the proton-pumping mechanism is the unambiguous determination of the configuration about the C13=C14 and C=N bonds, and the protonation state of the Schiff base nitrogen. Vibrational studies have shown that in light-adapted BR568 the Schiff base nitrogen is protonated and both the C13=C14 and C=N bonds are in a trans geometry. The formation of K625 involves the photochemical isomerization about only the C13=C14 bond which displaces the Schiff base proton into a different protein environment. Subsequent Schiff base deprotonation produces the M412 intermediate. Thermal reisomerization of the C13=C14 bond and reprotonation of the Schiff base occur in the M412------O640 transition, resetting the proton-pumping mechanism. The vibrational spectra can also be used to examine the conformation about the C--C single bonds. The frequency of the C14--C15 stretching vibration in BR568, K625, L550 and O640 argues that the C14--C15 conformation in these intermediates is s-trans. Conformational distortions of the chromophore have been identified in K625 and O640 through the observation of intense hydrogen out-of-plane wagging vibrations in the Raman spectra (see Fig. 2). These two intermediates are the direct products of chromophore isomerization. Thus it appears that following isomerization in a tight protein binding pocket, the chromophore cannot easily relax to a planar geometry. The analogous observation of intense hydrogen out-of-plane modes in the primary photoproduct in vision (Eyring et al., 1982) suggests that this may be a general phenomenon in protein-bound isomerizations. Future resonance Raman studies should provide even more details on how bacterio-opsin and retinal act in concert to produce an efficient light-energy convertor. Important unresolved questions involve the mechanism by which the protein catalyzes deprotonation of the L550 intermediate and the mechanism of the thermal conversion of M412 back to BR568. Also, it has been shown that under conditions of high ionic strength and/or low light intensity two protons are pumped per photocycle (Kuschmitz & Hess, 1981). How might this be accomplished?(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The chromophore of octopus rhodopsin is 11-cis retinal, linked via a protonated Schiff base to the protein backbone. Its stable photoproduct, metarhodopsin, has all-trans retinal as its chromphore. The Schiff base of acid metarhodopsin (lambda max = 510 nm) is protonated, whereas that of alkaline metarhodopsin (lambda max = 376 nm) is unprotonated. Metarhodopsin in photoreceptor membranes was titrated and the apparent pK of the Schiff base was measured at different ionic strengths. From these salt-dependent pKs the surface charge density of the octopus photoreceptor membranes and the intrinsic Schiff base pK of metarhodopsin were obtained. The surface charge density is sigma = -1.6 +/- 0.1 electronic charges per 1,000 A2. Comparison of the measured surface charge density with values from octopus rhodopsin model structures suggests that the measured value is for the extracellular surface and so the Schiff base in metarhodopsin is freely accessible to protons from the extracellular side of the membrane. The intrinsic Schiff base pK of metarhodopsin is 8.44 +/- 0.12, whereas that of rhodopsin is found to be 10.65 +/- 0.10 in 4.0 M KCl. These pK values are significantly higher than the pK value around 7.0 for a retinal Schiff base in a polar solvent; we suggest that a plausible mechanism to increase the pK of the retinal pigments is the preorganization of their chromophore-binding sites. The preorganized site stabilizes the protonated Schiff base with respect to the unprotonated one. The difference in the pK for the octopus rhodopsin compared with metarhodopsin is attributed to the relative freedom of the latter's chromophore-binding site to rearrange itself after deprotonation of the Schiff base.  相似文献   

18.
The visual pigment rhodopsin is characterized by an 11-cis retinal chromophore bound to Lys-296 via a protonated Schiff base. Following light absorption the C(11)=C(12) double bond isomerizes to trans configuration and triggers protein conformational alterations. These alterations lead to the formation of an active intermediate (Meta II), which binds and activates the visual G protein, transducin. We have examined by UV-visible and Fourier transform IR spectroscopy the photochemistry of a rhodopsin analogue with an 11-cis-locked chromophore, where cis to trans isomerization around the C(11)=C(12) double bond is prevented by a 6-member ring structure (Rh(6.10)). Despite this lock, the pigment was found capable of forming an active photoproduct with a characteristic protein conformation similar to that of native Meta II. This intermediate is further characterized by a protonated Schiff base and protonated Glu-113, as well as by its ability to bind a transducin-derived peptide previously shown to interact efficiently with native Meta II. The yield of this active photointermediate is pH-dependent and decreases with increasing pH. This study shows that with the C(11)=C(12) double bond being locked, isomerization around the C(9)=C(10) or the C(13)=C(14) double bonds may well lead to an activation of the receptor. Additionally, prolonged illumination at pH 7.5 produces a new photoproduct absorbing at 385 nm, which, however, does not exhibit the characteristic active protein conformation.  相似文献   

19.
Semiempirical molecular orbital calculations are combined with 13C NMR chemical shifts to localize the counterion in the retinal binding site of vertebrate rhodopsin. Charge densities along the polyene chain are calculated for an 11-cis-retinylidene protonated Schiff base (11-cis-RPSB) chromophore with 1) a chloride counterion at various distances from the Schiff base nitrogen, 2) one or two chloride counterions at different positions along the retinal chain from C10 to C15 and at the Schiff base nitrogen, and 3) a carboxylate counterion out of the retinal plane near C12. Increasing the distance of the negative counterion from the Schiff base results in an enhancement of alternating negative and positive partial charge on the even- and odd-numbered carbons, respectively, when compared to the 11-cis-RPSB chloride model compound. In contrast, the observed 13C NMR data of rhodopsin exhibit downfield chemical shifts from C8 to C13 relative to the 11-cis-RPSB.Cl corresponding to a net increase of partial positive or decrease of partial negative charge at these positions (Smith, S. O., I. Palings, M. E. Miley, J. Courtin, H. de Groot, J. Lugtenburg, R. A. Mathies, and R. G. Griffin. 1990. Biochemistry. 29:8158-8164). The anomalous changes in charge density reflected in the rhodopsin NMR chemical shifts can be qualitatively modeled by placing a single negative charge above C12. The calculated fit improves when a carboxylate counterion is used to model the retinal binding site. Inclusion of water in the model does not alter the fit to the NMR data, although it is consistent with observations based on other methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Sugihara M  Hufen J  Buss V 《Biochemistry》2006,45(3):801-810
To study the origin and the effects of steric strain on the chromophore conformation in rhodopsin, we have performed quantum-mechanical calculations on the wild-type retinal chromophore and four retinal derivatives, 13-demethyl-, 10-methyl-13-demethyl-, 10-methyl-, and 9-demethylretinal. For the dynamics of the whole protein, a combined quantum mechanics/molecular mechanics method (DFTB/CHARMM) was used and for the calculation of excited-state properties the nonempirical CASSCF/CASPT2 method. After relaxation inside the protein, all chromophores show significant nonplanar distortions from C10 to C13, most strongly for 10-methylretinal and least pronounced for 9-demethylretinal. In all five cases, the dihedral angle of the C10-C11=C12-C13 bond is negative which attests to the strong chiral discrimination exerted by the protein pocket. The calculations show that the nonplanar distortion of the chromophore, including the sense of rotation, is caused by a combination of two effects: the fitting of both ends to the protein matrix which imposes a distance constraint and the bonding arrangement at the Schiff base terminus. With both the counterion Glu113 and Lys296 displaced off the plane of the chromophore, their binding to N16 exerts a torque on the chromophore. As a result, the polyene chain, from N16 to C13, is twisted in a clockwise manner against the remaining part of the chromophore, leading to a C11=C12 bond with the observed negative dihedral angle. Shifts of the absorption maxima are reproduced correctly, in particular, the red shift of the 10-methyl and the strong blue shift of the 9-demethyl analogue relative to the wild type. Calculated positive rotatory strengths of the alpha-CD bands are in agreement with the calculated absolute conformation of the mutant chromophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号