首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mataga N  Mizuguchi Y  Hensch TK 《Neuron》2004,44(6):1031-1041
Sensory experience physically rewires the brain in early postnatal life through unknown processes. Here, we identify a robust anatomical consequence of monocular deprivation (MD) in layer II/III of visual cortex that corresponds to the rapid, functional loss of responsiveness preceding any changes in axonal input. Protrusions on pyramidal cell apical dendrites increased steadily after eye opening, but were transiently lost through competitive mechanisms after brief MD only during the physiological critical period. Proteolysis by tissue-type plasminogen activator (tPA) conversely declined with age and increased with MD only in young mice. Targeted disruption of tPA release or its upstream regulation by glutamic acid decarboxylase (GAD65) prevented MD-induced spine loss that was pharmacologically rescued concomitant with critical period plasticity. An extracellular mechanism for structural remodeling that is limited to the binocular zone upon proper detection of competing inputs thus links early sensory experience to visual function.  相似文献   

2.
Intracellular Ca2+ dynamics have been measured using imaging techniques in dendrites and spines of CA3 hippocampal neurons in brain slice under both acute and tissue culture conditions. In response to presynatic stimulation, micromolar levels of Ca2+ are rapidly reached in spines of distal dendrites. If stimulus parameters are chosen judiciously so as to minimize postsynaptic firing, then the dendrite shaft increases are far less. Spine Ca2+ increases are largely dependent upon activation of NMDA receptors. At the large mossy fiber synapses, presynaptic stimuli also produce large Ca2+ increases but the differences in shaft-spine Ca2+ levels are much less; often they are insignificant. Also at these locations, postsynaptic firing, without presynaptic stimulation is sufficient to produce large increase in spine Ca2+ levels. 1994 John Wiley & Sons, Inc.  相似文献   

3.
Growth of new dendritic spines contributes to experience-dependent circuit plasticity in the cerebral cortex. Yet the signaling mechanisms leading to?new spine outgrowth remain poorly defined. Increasing evidence supports that the proteasome is an important mediator of activity-dependent neuronal signaling. We therefore tested the role of the proteasome in activity-dependent spinogenesis. Using pharmacological manipulations, glutamate uncaging, and two-photon imaging of GFP-transfected hippocampal pyramidal neurons, we demonstrate that acute inhibition of the proteasome blocks activity-induced spine outgrowth. Remarkably, mutation of serine 120 to alanine of the Rpt6 proteasomal subunit in individual neurons was sufficient to block activity-induced spine outgrowth. Signaling through NMDA receptors and CaMKII, but not PKA, is required to facilitate spine outgrowth. Moreover, abrogating CaMKII binding to the NMDA receptor abolished activity-induced spinogenesis. Our data support a model in which neural activity facilitates spine outgrowth via an NMDA receptor- and CaMKII-dependent increase in local proteasomal degradation.  相似文献   

4.
E Korkotian  M Segal 《Neuron》2001,30(3):751-758
Dendritic spines have long been known to contain contractile elements and have recently been shown to express apparent spontaneous motility. Using high-resolution imaging of dendritic spines of green-fluorescent protein (GFP)-expressing, patch-clamped hippocampal neurons in dissociated culture, we find that bursts of action potentials, evoked by depolarizing current pulses, cause momentary contractions of dendritic spines. Blocking calcium currents with cobalt prevented these twitches. In additional experiments with neurons loaded via a micropipette with calcium-sensitive and insensitive dyes, spontaneous calcium transients were associated with a rapid contraction of the spine head. The spine twitch was prolonged by tetraethylammonium or bicuculline, which enhance calcium transients, and was blocked by the actin polymerization antagonist latrunculin-B. The spine twitch may be instrumental in modulating reactivity of the NMDA receptor to afferent stimulation, following back-propagating action potentials.  相似文献   

5.
Dissociated cultured rat hippocampal pyramidal neurons respond to estradiol with a time-dependent, twofold increase in density of their dendritic spines. This effect is mediated by an estrogen receptor, probably of the alpha nuclear receptor type. In searching for the molecular mechanisms leading from the initial activation of the estrogen receptor to the final formation of new dendritic spines, we found that estradiol acts on GABAergic interneurons expressing the estrogen receptor by decreasing their inhibitory tone. In culture, this is assumed to cause a shift in the balance between excitation and inhibition toward enhanced excitation, overactivation of the pyramidal neurons, and subsequent formation of novel dendritic spines. The action of estradiol on spine formation is mediated by phosphorylation of cyclic AMP response element binding protein in the pyramidal neurons and is blocked when inhibition is enhanced by diazepam and when excitation is blocked by tetrodotoxin. Progesterone blocks the effect of estradiol on dendritic spines through its conversion to tetrahydroprogesterone, which enhances GABAergic inhibition. Subsequent to formation of novel dendritic spines, there is an increase in the density of glutamatergic receptors in the affected cells, an increase in the cellular calcium response to glutamate, and an increase in network synaptic activity among the cultured neurons.  相似文献   

6.
The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE) complex has been proposed to link Rho GTPase activity with actin polymerization but its role in neuronal plasticity has never been documented. We now examined the presence, distribution and dynamics of WAVE3 in cultured hippocampal neurons. WAVE3 was localized to dendritic spines via its N-terminal domain. Green fluorescent protein (GFP)-tagged WAVE3 clusters demonstrate an F-actin-dependent high rate of local motility. Constitutive Rac activation translocates WAVE3 (via the N-terminus), to the leading edge of lamellipodia. Also, spinogenesis is associated with actin-based motility of the WAVE3 protein. Brain specific WAVE1 showed similar localization and effects on spine density. Cytoplasmic fragile X mental retardation protein interacting protein (CYFIP) and non-catalytic region of tyrosine kinase adaptor protein 1 (NCK-1), proteins that are assumed to complex with WAVE, have a somewhat similar cellular distribution and motility. We propose that the WAVE complex is a downstream effector of the Rac signaling cascade, localized to sites of novel synaptic contacts by means of its N-terminal domain, to guide local actin polymerization needed for morphological plasticity of neurons.  相似文献   

7.
Tumor-promoting phorbol esters and histamine induce tissue plasminogen activator (tPA) release from human endothelial cells in a dose- and time-dependent manner. Phorbol myristate acetate (PMA) and phorbol dibutyrate (PDBu) increased tPA concentration in the culture medium by eight to 12 times after 24 h with half-maximal stimulation at 13 and 55 nM, respectively. Maximum release by histamine was only half that of the phorbol esters and required 18 microM for half-maximal response. Kinetics of enhanced release was similar with both types of agonists: a 4-h lag period followed by a period of rapid release (4 h in PMA-treated and 10 h in histamine-treated cultures) followed by a decline toward pretreatment rates. The PMA and histamine effects were additive while histamine and thrombin, which also stimulates tPA release in human endothelial cells, were no more effective together than they were alone. Exposure of the cells to PMA, PDBu, or phorbol 12,13-didecanoate caused a loss of responsiveness to second treatment of the homologous agent that was time- and dose-dependent, sustained, and specific to active tumor promoters (half-maximal desensitization = 52 nM PDBu). A partial desensitized state was also established by histamine which resulted in a 60% lower response to a second challenge dose. Histamine-induced desensitization did not interfere with the PMA response. However, PMA-induced desensitization caused a 75% loss of the histamine and a 67% loss of the thrombin effects. These studies indicate that tumor promoters are potent agonists of tPA release from human endothelial cells and establish a desensitized state to further stimulation. Treatment of these cells with histamine has similar effects which may be mediated at least in part by pathways common to phorbol ester stimulation.  相似文献   

8.
Emptage N  Bliss TV  Fine A 《Neuron》1999,22(1):115-124
We have used confocal microscopy to monitor synaptically evoked Ca2+ transients in the dendritic spines of hippocampal pyramidal cells. Individual spines respond to single afferent stimuli (<0.1 Hz) with Ca2+ transients or failures, reflecting the probability of transmitter release at the activated synapse. Both AMPA and NMDA glutamate receptor antagonists block the synaptically evoked Ca2+ transients; the block by AMPA antagonists is relieved by low Mg2+. The Ca2+ transients are mainly due to the release of calcium from internal stores, since they are abolished by antagonists of calcium-induced calcium release (CICR); CICR antagonists, however, do not depress spine Ca2+ transients generated by backpropagating action potentials. These results have implications for synaptic plasticity, since they show that synaptic stimulation can activate NMDA receptors, evoking substantial Ca2+ release from the internal stores in spines without inducing long-term potentiation (LTP) or depression (LTD).  相似文献   

9.
10.
Dendritic spines are protrusions from the dendritic shaft that host most excitatory synapses in the brain. Although they first emerge during neuronal maturation, dendritic spines remain plastic through adulthood, and recent advances in the molecular mechanisms governing spine morphology have shown them to be exquisitely sensitive to changes in the micro-environment. Among the many factors affecting spine morphology are components and regulators of the extracellular matrix (ECM). Modification of the ECM is critical to the repair of injuries throughout the body, including the CNS. Matrix metalloproteinase (MMP)-7/matrilysin is a key regulator of the ECM during pathogen infection, after nerve crush and in encephalitogenic disorders. We have investigated the effects of MMP-7 on dendritic spines in hippocampal neuron cultures and found that it induces the transformation of mature, short mushroom-shaped spines into long, thin filopodia reminiscent of immature spines. These changes were accompanied by a dramatic redistribution of F-actin from spine heads into thick, rope-like structures in the dendritic shaft. Strikingly, MMP-7 effects on dendritic spines were similar to those of NMDA treatment, and both could be blocked by channel-specific antagonists. These findings are the first direct evidence that MMPs can influence the morphology of mature dendritic spines, and hence synaptic stability.  相似文献   

11.
R Machovich  W G Owen 《Enzyme》1988,40(2-3):109-112
A component extracted from endothelium and partially purified has been found to have a capacity to enhance the rate of plasminogen activation by tissue-type plasminogen activator. The mechanism of action of this cofactor differs from that of others, such as fibrin.  相似文献   

12.
Verkuyl JM  Matus A 《Nature protocols》2006,1(5):2399-2405
Dendritic spines are small protrusions present postsynaptically at approximately 90% of excitatory synapses in the brain. Spines undergo rapid spontaneous changes in shape that are thought to be important for alterations in synaptic connectivity underlying learning and memory. Visualization of these dynamic changes in spine morphology are especially challenging because of the small size of spines (approximately 1 microm). Here we describe a microscope system, based on a spinning-disk confocal microscope, suitable for imaging mature dendritic spines in brain slice preparations, with a time resolution of seconds. We discuss two commonly used in vitro brain slice preparations and methods for transfecting them. Preparation and transfection require approximately 1 d, after which slices must be cultured for at least 21 d to obtain spines of mature morphology. We also describe imaging and computer analysis routines for studying spine motility. These procedures require in the order of 2 to 4 h.  相似文献   

13.
We have examined the effect of phorbol esters and cAMP elevating compounds on tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) secretion. Phorbol esters induce a time- and dose-dependent increase in tPA release from endothelial cells, while forskolin, isobutylmethylxanthine, dibutyryl cAMP, and 8-bromo-cAMP had no significant stimulatory effect on tPA secretion. However, elevation of cAMP simultaneously with phorbol ester treatment potentiated the phorbol ester-induced release of tPA 6 times from 22.2 ng/ml with phorbol myristate acetate (PMA) alone to 122.1 ng/ml (PMA and forskolin). Potentiation was dose-dependent (half-maximal potentiation = 4 microM forskolin), and tPA release was enhanced at all stimulatory concentrations of PMA with no change in the PMA concentrations causing half-maximal or maximum tPA release. The kinetics of release was also similar in PMA versus PMA-forskolin-treated cells. A 4-h delay was observed, enhanced release was transient, and was followed by the onset of a refractory period. In contrast, elevation of cAMP reduced constitutive secretion of PAI-1 by 30-40% and prevented the increase in PAI-1 secretion stimulated by PMA. Elevated cAMP also decreased the rate of PAI-1 deposition into the endothelial substratum. These studies indicate that activation of a cAMP-dependent pathway(s) in coordination with phorbol ester-induced responses plays a central role in modifying the tPA and PAI-1 secretion from endothelial cells, leading to a profibrinolytic state in the endothelial environment.  相似文献   

14.
The protein kinase C inhibitor H7 (10(-5) mol/l) is able to inhibit the thrombin-induced t-PA release in the isolated perfused pig ear. The thrombin-induced t-PA release can be blocked by increasing the intracellular c-AMP via either the activation of adenylate cyclase by means of forskolin, or the inhibition of the phosphodiesterase by means of motapizone or milrinone. Protein kinase C is assumed to be involved in the process of thrombin-induced t-PA release.  相似文献   

15.
16.
Most biological effects of tissue plasminogen activator (tPA), such as fibrinolysis, are mediated by its protease activity. Recent studies, however, have demonstrated that tPA also has several protease-independent effects such as: neuroprotection, microglial activation, and promoting LTP formation. In order to gain a better understanding of how tPA affects neurons, we examined neurite outgrowth and cell survival in low density cerebrocortical neuronal culture in the presence of tPA. tPA enhanced neurite elongation and neuronal survival. tPA protease inhibitors, PAI-1 or PMSF, did not alter either effect. Consistent with neurotrophic effects, tPA activated Raf-K/ERK, PKC and PI3-K/Akt, 5-60 min after treatment. In addition, specific inhibitors of these kinases reduced tPA-induced neurite outgrowth. Interestingly, survival-promoting effect of tPA was attenuated only by PI3-K inhibitors. Activation of signaling kinases suggests that tPA activates an upstream membrane receptor. Thus far, three membrane proteins, low density lipoprotein receptor-related protein (LRP), mannose receptor (MR), and annexin-II (AII), have been identified to bind tPA. While inhibiting LRP or MR did not change tPA-induced neurite outgrowth and cell survival, inhibiting AII blocked neurotrophic effects of tPA. Taken together, our results indicate that tPA has novel, non-proteolytic neurotrophic effects on cultured cortical neurons, which are likely mediated by AII.  相似文献   

17.
18.
To understand the cell signaling of protein kinases, it is essential to monitor their activity in each of the subcellular compartments. Here we developed a method to visualize the activities of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the cytoplasm, plasma membrane, and nucleus, separately, by utilizing targeted phosphorylation motifs and phosphorylation-specific antibodies. This approach was used to monitor the activities of post-synaptic CaMKII in cultured hippocampal neurons. Strong stimulation of the neurons by N-methyl-d-aspartate led to global activations of CaMKII in the cell bodies and dendrites. On the other hand, weak stimulation by removal of Mg(2+) block of N-methyl-d-aspartate receptors induced CaMKII signaling localized within single dendritic spines. Post-synaptic CaMKII is thought to modify synaptic efficiency. The present data for the first time demonstrate the activation of CaMKII localized within single dendritic spines and are consistent with the notion that synaptic efficiency is modified by CaMKII in single or multiple spine level depending on the strength of receptor activation.  相似文献   

19.
Tissue kallikrein and factor Xa were found to activate tissue plasminogen activator (t-PA) at a rate comparable with that of plasmin. During the activation reaction, the single-chain molecule was converted into a two-chain form. A slight t-PA activating activity was also found in plasma kallikrein. Other activated coagulation factors, factor XIIa, factor XIa, factor IXa, factor VIIa, thrombin and activated protein C had no effect on t-PA activation. t-PA was also activated by a tissue kallikrein-like enzyme that was isolated from the culture medium of melanoma cells. These results indicate that tissue kallikrein and factor Xa may participate in the extrinsic pathway of human fibrinolysis.  相似文献   

20.
This study examined the effect of the preovulatory gonadotropin surge on the temporal and spatial regulation of tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), and uPA receptor (uPAR) mRNA expression and tPA, uPA, and plasmin activity in bovine preovulatory follicles and new corpora lutea collected at approximately 0, 6, 12, 18, 24, and 48 h after a GnRH-induced gonadotropin surge. Messenger RNAs for tPA, uPA, and uPAR were increased in a temporally specific fashion within 24 h of the gonadotropin surge. Localization of tPA mRNA was primarily to the granulosal layer, whereas both uPA and uPAR mRNAs were detected in both the granulosal and thecal layers and adjacent ovarian stroma. Activity for tPA was increased in follicular fluid and the preovulatory follicle apex and base within 12 h after the gonadotropin surge. The increase in tPA activity in the follicle base was transient, whereas the increased activity in the apex was maintained through the 24 h time point. Activity for uPA increased in the follicle apex and base within 12 h of the gonadotropin surge and remained elevated. Plasmin activity in follicular fluid also increased within 12 h after the preovulatory gonadotropin surge and was greatest at 24 h. Our results indicate that mRNA expression and enzyme activity for both tPA and uPA are increased in a temporally and spatially specific manner in bovine preovulatory follicles after exposure to a gonadotropin surge. Increased plasminogen activator and plasmin activity may be a contributing factor in the mechanisms of follicular rupture in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号