首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
There have been no previous surveys documenting genetic diversity in Beauveria bassiana (Balsamo) Vuillemin in Hawaii. We used PCR primers and DNA sequencing to genetically characterize 14 isolates of B. bassiana collected from insects in east Hawaii island (the largest Hawaiian island, known as the ‘Big Island’) and compared these with the ‘GHA’ strain found in the commercial product BotaniGard®. Twelve of the 14 Hawaiian isolates were unique and the GHA strain was not among those isolated from the wild. Our data provides evidence that genetic diversity of B. bassiana in Hawaii is high over small spatial scales.  相似文献   

2.
The Hawaiian Drosophilidae contains approximately 1000 species, placed in species groups and subgroups based largely on secondary sexual modifications to wings, forelegs and mouthparts. Members of the spoon tarsus subgroup possess a cup-shaped structure on the foretarsi of males. Eight of the twelve species in this subgroup are found only on the Big Island of Hawaii, suggesting that they have diverged within the past 600,000 years. This rapid diversification has made determining the relationships within this group difficult to infer. We use 13 genes, including nine rapidly evolving nuclear loci, to estimate relationships within the spoon tarsus species, as well as to test the monophyly of this subgroup. A variety of analytical approaches are used, including individual and concatenated analyses, Bayesian estimation of species trees and Bayesian untangling of concordance knots. We find widespread agreement between phylogenetic estimates derived from different methods, although some incongruence is present. Notably, our analyses suggest that the spoon tarsus subgroup, as currently defined, is not monophyletic.  相似文献   

3.
The endemic moth genus Hyposmocoma (Lepidoptera: Cosmopterigidae) may be one of the most speciose and ecologically diverse genera in Hawaii. Among this diversity is the Hyposmocoma saccophora clade with previously unrecorded aquatic larvae. I present a molecular phylogeny based on 773 base pairs (bp) of the mitochondrial gene cytochrome c oxidase subunit I and 762 bp of the nuclear gene elongation factor 1-alpha. Topologies were constructed from data using maximum-parsimony, maximum-likelihood and Bayesian search criteria. Results strongly support the monophyly of the H. saccophora clade and the monophyly of the genus Hyposmocoma. The H. saccophora clade has single-island endemic species on Oahu, Molokai and West Maui. By contrast, there are three species endemic to Kauai, two being sympatric. The H. saccophora clade appears to follow the progression rule, with more basal species on older islands, including the most basal species on 11 Myr-old Necker Island, one of the Northwestern Hawaiian Islands. Aquatic behaviour either evolved recently in the species on the main Hawaiian Islands or was secondarily lost on the arid northwestern Necker Island. The phylogeny suggests that Hyposmocoma is older than any of the current main islands, which may, in part, explain Hyposmocoma's remarkable diversity.  相似文献   

4.
5.
The only bees native to the Hawaiian Islands form a single clade of 60 species in the genus Hylaeus. The group is understudied and relatively poorly known. A data set consisting of 1201 base pairs of the mitochondrial genes cytochrome oxidase I and II and tRNA‐Leucine, and 14 morphological characters was used to construct a phylogenetic tree for 48 of the 60 known species. Genetic variation was high, including amino acid changes, and a number of species showed evidence of heteroplasmy. Tree support was low due to high levels of homoplasy. Biogeographical analysis using DIVA indicates that early radiation took place on the island of Hawaii. This places an upper age limit of only 0.4–0.7 Myr for the group, an unusually short time for such a large radiation. Moreover, it is an unusual biogeographical pattern among the Hawaiian biota. © The Willi Hennig Society 2006.  相似文献   

6.
Knowledge of the evolutionary history of plants that are ecologically dominant in modern ecosystems is critical to understanding the historical development of those ecosystems. Metrosideros is a plant genus found in many ecological and altitudinal zones throughout the Pacific. In the Hawaiian Islands, Metrosideros polymorpha is an ecologically dominant species and is also highly polymorphic in both growth form and ecology. Using 10 non-coding chloroplast regions, we investigated haplotype diversity in the five currently recognized Hawaiian Metrosideros species and an established out-group, Metrosideros collina, from French Polynesia. Multiple haplotype groups were found, but these did not match morphological delimitations. Alternative morphologies sharing the same haplotype, as well as similar morphologies occurring within several distinct island clades, could be the result of developmental plasticity, parallel evolution or chloroplast capture. The geographical structure of the data is consistent with a pattern of age progressive island colonizations and suggests de novo intra-island diversification. If single colonization events resulted in a similar array of morphologies on each island, this would represent parallel radiations within a single, highly polymorphic species. However, we were unable to resolve whether the pattern is instead explained by ancient introgression and incomplete lineage sorting resulting in repeated chloroplast capture. Using several calibration methods, we estimate the colonization of the Hawaiian Islands to be potentially as old as 3.9 (-6.3) Myr with an ancestral position for Kaua'i in the colonization and evolution of Metrosideros in the Hawaiian Islands. This would represent a more ancient arrival of Metrosideros to this region than previous studies have suggested.  相似文献   

7.
Ectomycorrhizal plants and fungi are ubiquitous in mainland forests, but because of dispersal limitations are predicted to be less common on isolated islands. For instance, no native ectomycorrhizal plants or fungi have ever been reported from Hawaii, one of the most remote archipelagos on Earth. Members of the plant tribe Pisonieae are common on many islands, and prior evidence shows that some species associate with ectomycorrhizal fungi. However, until now, the Pisonieae species of Hawaii had yet to be examined for their mycorrhizal status. Here we sampled roots from members of the genus Pisonia growing on the Hawaiian islands of Oahu, Maui and Hawaii. We used molecular and microscopic techniques to categorize trees with respect to their mycorrhizal associations. We report that the Hawaiian endemic Pisonia sandwicensis forms ectomycorrhizas with at least five fungal operational taxonomic units (corresponding closely to species) belonging to four genera. We also report that this tree species is monophyletic with other ectomycorrhizal Pisonia species. We suggest that in light of the newly discovered Hawaiian ectomycorrhizal fungal community and other island ectomycorrhizal communities, dispersal limitations do not prevent the colonization of remote islands by at least some ectomycorrhizal fungi.  相似文献   

8.
The extant endemic katydids (Orthoptera: Tettigoniidae) of the Hawaiian Archipelago include one to three species per high island and a single species on Nihoa, all currently placed in the genus Banza. These acoustic insects provide an excellent opportunity for investigating the evolution of reproductive isolation and speciation, but such studies require an understanding of phylogenetic relationships within the group. We use maximum parsimony, likelihood-based Bayesian inference, and maximum likelihood to infer phylogenetic relationships among these taxa, based on approximately 2kb of mitochondrial cytochrome oxidase I and cytochrome b. Our results strongly support two distinct high island clades: one clade ("Clade I") composed of species from Kauai, Oahu, Molokai, and Lanai and another clade ("Clade II") composed of species from Maui and Hawaii (Banza unica, from Oahu, may be basal to both these clades, but its placement is not well resolved). Within these clades, some inferred relationships are strongly supported, such as the sister status of B. kauaiensis (Kauai) and B. parvula (Oahu) within Clade I, but other relationships remain more ambiguous, such as the relative position of B. brunnea (Maui) within Clade II. Although a detailed reconstruction of the historical biogeography of the Hawaiian katydids is difficult, we use our genetic data combined with the known geological history of the Hawaiian Islands to set limits on plausible historical scenarios for diversification of this group. Beyond these historical biogeographic inferences, our results indicate possible cryptic speciation on both Oahu and Hawaii, as well as what may be unusually high average rates of nucleotide substitution. The present work sets the stage for future genetic and experimental investigations of this group.  相似文献   

9.
The Hawaiian happy face spider ( Theridion grallator Simon, 1900), named for a remarkable abdominal colour pattern resembling a smiling face, has served as a model organism for understanding the generation of genetic diversity. Theridion grallator is one of 11 endemic Hawaiian species of the genus reported to date. Asserting the origin of island endemics informs on the evolutionary context of diversification, and how diversity has arisen on the islands. Studies on the genus Theridion in Hawaii, as elsewhere, have long been hampered by its large size (> 600 species) and poor definition. Here we report results of phylogenetic analyses based on DNA sequences of five genes conducted on five diverse species of Hawaiian Theridion , along with the most intensive sampling of Theridiinae analysed to date. Results indicate that the Hawaiian Islands were colonised by two independent Theridiinae lineages, one of which originated in the Americas. Both lineages have undergone local diversification in the archipelago and have convergently evolved similar bizarre morphs. Our findings confirm para- or polyphyletic status of the largest Theridiinae genera: Theridion , Achaearanea and Chrysso . Convergent simplification of the palpal organ has occurred in the Hawaiian Islands and in two continental lineages. The results confirm the convergent evolution of social behaviour and web structure, both already documented within the Theridiidae. Greater understanding of phylogenetic relationships within the Theridiinae is key to understanding of behavioural and morphological evolution in this highly diverse group.  相似文献   

10.
Impatiens comprises more than 1000 species and is one of the largest genera of flowering plants. The genus has a subcosmopolitan distribution, yet most of its evolutionary history is unknown. Diversification analyses, divergence time estimates and historical biogeography, illustrated that the extant species of Impatiens originated in Southwest China and started to diversify in the Early Miocene. Until the Early Pliocene, the net diversification rate within the genus was fairly slow. Since that time, however, approximately 80% of all Impatiens lineages have originated. This period of rapid diversification coincides with the global cooling of the Earth’s climate and subsequent glacial oscillations. Without this accelerated diversification rate, Impatiens would only have contained 1/5th of its current number of species, thereby indicating the rapid radiation of the genus.  相似文献   

11.
Karyotype, host preference, isozyzme patterns, morphometrics, and mating behavior of two burrowing nematode populations from Hawaii, one infecting Anthurium sp. and the second infecting Musa sp., were compared with Radopholus similis and R. citrophilus populations from Florida. The population from Anthurium sp. had five chromosomes (n = 5), and that from Musa sp. had four (n = 4). Neither of the Hawaiian nematode populations persisted in roots of Citrus limon or C. aurantium. Anthurium clarinerivum and A. hookeri were hosts of the burrowing nematode population from anthurium in Hawaii and of R. citrophilus from Florida, whereas the two anthurium species were poor hosts of the population from Musa sp. in Hawaii and R. similis from Florida. The isozyme pattern of the population isolated from anthurium was identical to that of R. citrophigus, whereas the pattern of the population from banana in Hawaii was identical to that of R. similis. Mating behavior between the burrowing nematode population isolated from Anthurium sp. and a Florida population of R. citrophilus supports their close taxonomic relationship. Mating was observed between the population from Anthurium sp. and the Florida population of R. citrophilus but not between the Hawaiian burrowing nematode population isolated from Musa sp. and a Florida population of R. citrophilus. These findings indicate that a previously unidentified population of R. citrophilus which does not parasitize citrus occurs in Hawaii.  相似文献   

12.
Most of the large Drosophila species of Hawaii are single-island endemics. Chromosomal sequences show that species at the new end of the archipelago have been derived stepwise from ancestral populations on older islands. The oldest high island has an endemic species with sequences that match some in the Nearctic-Palearctic robusta species group. Colonization from a continent by long-distance dispersal seems a likely origin for the Hawaiian drosophilids. Telmatogeton, a worldwide genus of marine midges, has five Hawaiian species inhabiting freshwater streams. Chromosomal sequences of a marine species in Hawaiian waters match the freshwater forms, indicating colonization from the ocean.  相似文献   

13.
Seabirds are highly vagile and can disperse up to thousands of kilometers, making it difficult to identify the factors that promote isolation between populations. The endemic Hawaiian petrel (Pterodroma sandwichensis) is one such species. Today it is endangered, and known to breed only on the islands of Hawaii, Maui, Lanai and Kauai. Historical records indicate that a large population formerly bred on Molokai as well, but this population has recently been extirpated. Given the great dispersal potential of these petrels, it remains unclear if populations are genetically distinct and which factors may contribute to isolation between them. We sampled petrels from across their range, including individuals from the presumably extirpated Molokai population. We sequenced 524 bp of mitochondrial DNA, 741 bp from three nuclear introns, and genotyped 18 microsatellite loci in order to examine the patterns of divergence in this species and to investigate the potential underlying mechanisms. Both mitochondrial and nuclear data sets indicated significant genetic differentiation among all modern populations, but no differentiation was found between historic samples from Molokai and modern birds from Lanai. Population-specific nonbreeding distribution and strong natal philopatry may reduce gene flow between populations. However, the lack of population structure between extirpated Molokai birds and modern birds on Lanai indicates that there was substantial gene flow between these populations and that petrels may be able to overcome barriers to dispersal prior to complete extirpation. Hawaiian petrel populations could be considered distinct management units, however, the dwindling population on Hawaii may require translocation to prevent extirpation in the near future.  相似文献   

14.
All known populations of koa-finches, genus Rhodacanthis , became extinct in the Holocene epoch. Two new species are described here from Quaternary fossil sites in the Hawaiian Islands. One new species, from Kauai and Maui, is roughly the size of the historically known greater koa-finch ( R. palmeri ) but differs in having a more robust skull and in bill morphology. The second new species, from Oahu and Maui, is similar in size to the lesser koa-finch ( R. flaviceps ) but closer to R. palmeri in qualitative osteological traits. The two species of koa-finches known historically from the island of Hawaii are distinct in osteology from the fossil koa-finches on the older Hawaiian islands, indicating that at least two of the four known speciation events in the genus took place within approximately the past 500 kyr. However, the similarity of maxillae from Pleistocene and Holocene sites on Oahu suggests that the Oahu population maintained morphological stasis through the climate changes of the late Quaternary. The evidence that speciation occurred on the youngest island in the archipelago suggests that the process of community assembly on newly emergent Hawaiian landscapes was a stimulus to evolutionary diversification in Rhodacanthis .  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 144 , 527–541.  相似文献   

15.
Hawaiian biogeography and the islands' freshwater fish fauna   总被引:3,自引:0,他引:3  
Aim This paper describes known patterns in the distributions and relationships of Hawaiian freshwater fishes, and compares these patterns with those exhibited by Hawaii's terrestrial biota. Location The study is based in Hawaii, and seeks patterns across the tropical and subtropical Indo‐west Pacific. Methods The study is based primarily on literature analysis. Results The Hawaiian freshwater fish fauna comprises five species of goby in five different genera (Gobiidae). Four species are Hawaiian endemics, the fifth shared with islands in the western tropical Pacific Ocean. All genera are represented widely across the Indo‐west Pacific. All five species are present on all of the major Hawaiian islands. All five species are amphidromous – their larval and early juvenile life being spent in the sea. Although there has been some local phyletic evolution to produce Hawaiian endemics, there has been no local radiation to produce single‐island endemics across the archipelago. Nor is there evidence for genetic structuring among populations in the various islands. Main conclusions In this regard, the freshwater fish fauna of Hawaii differs from the well‐known patterns of local evolution and radiation in Hawaiian Island terrestrial taxa. Amphidromy probably explains the biogeographical idiosyncrasies of the fish fauna – dispersal through the sea initially brought the fish species to Hawaii, and gene flow among populations, across the archipelago, has hitherto inhibited the evolution of local island endemics, apparently even retarding genetic structuring on individual islands.  相似文献   

16.

Background and Aims

The Hawaiian silversword alliance (Asteraceae) is one the best examples of a plant adaptive radiation, exhibiting extensive morphological and ecological diversity. No research within this group has addressed the role of geographical isolation, independent of ecological adaptation, in contributing to taxonomic diversity. The aims of this study were to examine genetic differentiation among subspecies of Dubautia laxa (Asteraceae) to determine if allopatric or sympatric populations and subspecies form distinct genetic clusters to understand better the role of geography in diversification within the alliance.

Methods

Dubautia laxa is a widespread member of the Hawaiian silversword alliance, occurring on four of the five major islands of the Hawaiian archipelago, with four subspecies recognized on the basis of morphological, ecological and geographical variation. Nuclear microsatellites and plastid DNA sequence data were examined. Data were analysed using maximum-likelihood and Bayesian phylogenetic methodologies to identify unique evolutionary lineages.

Key Results

Plastid DNA sequence data resolved two highly divergent lineages, recognized as the Laxa and Hirsuta groups, that are more similar to other members of the Hawaiian silversword alliance than they are to each other. The Laxa group is basal to the young island species of Dubautia, whereas the Hirsuta group forms a clade with the old island lineages of Dubautia and with Argyroxiphium. The divergence between the plastid groups is supported by Bayesian microsatellite clustering analyses, but the degree of nuclear differentiation is not as great. Clear genetic differentiation is only observed between allopatric populations, both within and among islands.

Conclusions

These results indicate that geographical separation has aided diversification in D. laxa, whereas ecologically associated morphological differences are not associated with neutral genetic differentiation. This suggests that, despite the stunning ecological adaptation observed, geography has also played an important role in the Hawaiian silversword alliance plant adaptive radiation.  相似文献   

17.
The enigmatic fern genus Diellia, endemic to the Hawaiian archipelago, consists of five extant and one recently extinct species. Diellia is morphologically highly variable, and a unique combination of characters has led to several contrasting hypotheses regarding the relationship of Diellia to other ferns. A phylogenetic analysis of four chloroplast loci places Diellia within 'black-stemmed' rock spleenworts of the species-rich genus Asplenium, as previously suggested by W. H. Wagner. Using an external calibration point, we estimate the divergence of the Diellia lineage from its nearest relatives to have occurred at ca. 24.3 Myr ago matching an independent estimate for the renewal of Hawaiian terrestrial life (ca. 23 Myr ago). We therefore suggest that the ancestor of the Diellia lineage may have been among the first successful colonists of the newly emerging islands in the archipelago. Disparity between morphological and nucleotide sequence variation within Diellia is consistent with a recent rapid radiation. Our estimated time of the Diellia radiation (ca. 2 Myr ago) is younger than the oldest island of Kaua'i (ca. 5.1 Myr ago) but older than the younger major islands of Maui (ca. 1.3 Myr ago), Lana'i (ca. 1.3 Myr ago) and Hawaii (ca. 0.43 Myr ago).  相似文献   

18.
Avian malaria has had a profound impact on the demographics and behaviour of Hawaiian forest birds since its vector, Culex quinquefasciatus the southern house mosquito, was first introduced to Hawaii around 1830. In order to understand the dynamics of the disease in Hawaii and gain insights into the evolution of vector-mediated parasite-host interactions in general we studied the population genetics of Cx. quinquefasciatus in the Hawaiian Islands. We used both microsatellite and mitochondrial loci. Not surprisingly we found that mosquitoes in Midway, a small island in the Western group, are quite distinct from the populations in the main Hawaiian Islands. However, we also found that in general mosquito populations are relatively isolated even among the main islands, in particular between Hawaii (the Big Island) and the remaining Hawaiian Islands. We found evidence of bottlenecks among populations within the Big Island and an excess of alleles in Maui, the site of the original introduction. The mitochondrial diversity was typically low but higher than expected. The current distribution of mitochondrial haplotypes combined with the microsatellite information lead us to conclude that there have been several introductions and to speculate on some processes that may be responsible for the current population genetics of vectors of avian malaria in Hawaii.  相似文献   

19.
DNA sequences in the alcohol dehydrogenase genes of flies representing the major groups of Hawaiian Drosophila are used to clarify the relationships of these groups, among themselves and with mainland Drosophila. The topology of the tree derived from these sequences agrees with karyotypic and morphological data but disagrees, in part, with the results of an earlier study that used immunological comparisons between variants of a larval hemolymph protein. A time scale, derived from a comparison of closely related Hawaiian Drosophila species, provides divergence-time estimates that are substantially more recent than those obtained from the immunological studies, although they are still within the bounds set by fossil and biogeographical evidence. The two major lineages of Hawaiian Drosophila, the scaptomyzoids and the drosophiloids, are shown to be widely separated from one another. The scaptomyzoids appear to have diverged early in the history of the subgenus Drosophila, greater than 25 Mya. While hundreds of scaptomyzoid species are found in the Hawaiian archipelago, many fewer are found elsewhere around the world, suggesting that they could have originated outside Hawaii. The drosophiloid lineage is strictly endemic to Hawaii and originated little more than 10 Mya, according to the alcohol dehydrogenase molecular clock. Thus, Drosophila apparently inhabited the Hawaiian archipelago (greater than or equal to 5 Myr before the emergence of the oldest existing high island, Kauai, 5 Mya.  相似文献   

20.
Invasive species cause extensive damage to their introduced ranges. Ocean archipelagos are particularly vulnerable to invasive taxa. In this study, we used polymorphic microsatellite markers to investigate the genetic structure of the social wasp Vespula pensylvanica in its native range of North America and its introduced range in the archipelago of Hawaii. Our goal was to gain a better understanding of the invasion dynamics of social species and the processes affecting biological invasions. We found that V. pensylvanica showed no significant genetic isolation by distance and little genetic structure over a span of 2000 km in its native range. This result suggests that V. pensylvanica can successfully disperse across large distances either through natural‐ or human‐mediated mechanisms. In contrast to the genetic patterns observed in the native range, we found substantial genetic structure in the invasive V. pensylvanica range in Hawaii. The strong patterns of genetic differentiation within and between the Hawaiian Islands may reflect the effects of geographic barriers and invasion history on gene flow. We also found some evidence for gene flow between the different islands of Hawaii which was likely mediated through human activity. Overall, this study provides insight on how geographic barriers, invasion history, and human activity can shape population genetic structure of invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号