首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Pasteurella multocida toxin (PMT) is a highly potent mitogen for a variety of cell types. PMT has been shown to induce various cellular signaling processes, and it has been suggested to function through the heterotrimeric G-proteins G(q)/G(11). To analyze the role of G(q)/G(11) in the action of PMT, we have studied the effect of the toxin in Galpha(q)/Galpha(11) double-deficient fibroblasts as well as in fibroblasts lacking only Galpha(q) or Galpha(11). Interestingly, formation of inositol phosphates in response to PMT was exclusively dependent on Galpha(q) but not on the closely related Galpha(11). Although Galpha(q)/Galpha(11) double-deficient and Galpha(q)-deficient cells did not respond with any production of inositol phosphates to PMT, PMT was still able to induce various other cellular effects in these cells, including the activation of Rho, the Rho-dependent formation of actin stress fibers and focal adhesions, as well as the stimulation of c-Jun N-terminal kinase and extracellular signal-regulated kinase. These data show that PMT leads to a variety of cellular effects that are mediated only in part by the heterotrimeric G-protein G(q).  相似文献   

3.
4.
Retinol and retinoic acid at 20 microM altered cell morphology and inhibited cell proliferation of UMR 106 osteosarcoma cells in culture. No specific cytosolic binding proteins for retinol could be detected.  相似文献   

5.
Intrastriatal injection of kainic acid, which destroys striatal post-synaptic structures, prevents the increase in TH cofactor affinity but not the in vivo stimulation of DA-synthesis produced by haloperidol. Destruction of cortico-striatal input by decortication fails to prevent the effect of haloperidol and of apomorphine on striatal DA-metabolism. The results are taken to indicate that post-synaptic DA-receptors control stable conformational changes of TH molecule while pre-synaptic DA-receptors control DA-synthesis in a manner independent of changes in TH activity persisting in vitro. No evidence could be obtained that pre-synaptic DA-receptors located on cortico-striatal axons play a major role in the control of DA-metabolism in vivo.  相似文献   

6.
To determine whether sarcolemmal and/or mitochondrial ATP-sensitive potassium (K(ATP)) channels (sarcK(ATP), mitoK(ATP)) are involved in stretch-induced protection, isolated isovolumic rat hearts were assigned to the following protocols: nonstretched hearts were subjected to 20 min of global ischemia (Is) and 30 min of reperfusion, and before Is stretched hearts received 5 min of stretch + 10 min of no intervention. Stretch was induced by a transient increase in left ventricular end-diastolic pressure (LVEDP) from 10 to 40 mmHg. Other hearts received 5-hydroxydecanoate (5-HD; 100 microM), a selective inhibitor of mitoK(ATP), or HMR-1098 (20 microM), a selective inhibitor of sarcK(ATP), before the stretch protocol. Systolic function was assessed through left ventricular developed pressure (LVDP) and maximal rise in velocity of left ventricular pressure (+dP/dt(max)) and diastolic function through maximal decrease in velocity of left ventricular pressure (-dP/dt(max)) and LVEDP. Lactate dehydrogenase (LDH) release and ATP content were also measured. Stretch resulted in a significant increase of postischemic recovery and attenuation of diastolic stiffness. At 30 min of reperfusion LVDP and +dP/dt(max) were 87 +/- 4% and 92 +/- 6% and -dP/dt(max) and LVEDP were 95 +/- 9% and 10 +/- 4 mmHg vs. 57 +/- 6%, 53 +/- 6%, 57 +/- 10%, and 28 +/- 5 mmHg, respectively, in nonstretched hearts. Stretch increased ATP content and did not produce LDH release. 5-HD did not modify and HMR-1098 prevented the protection achieved by stretch. Our results show that the beneficial effects of stretch on postischemic myocardial dysfunction, cellular damage, and energetic state involve the participation of sarcK(ATP) but not mitoK(ATP).  相似文献   

7.
8.
The force exerted by a single limb during a maximal bilateral contraction has been found to be less than the force associated with a maximal unilateral contraction. The purpose of this study was to determine whether this bilateral deficit is due to neural mechanisms. For one experiment, three groups of subjects (untrained, cyclists, and weight lifters) performed maximal one- or two-limb isometric tasks for which the two-limb combinations were either both legs or the left arm and the right leg. The untrained subjects exhibited a bilateral deficit, the cyclists did not, and the weight lifters produced a bilateral facilitation. Although the changes in electromyogram did not completely parallel the changes in force, variability in the filtered electromyogram associated with the maximal contraction was too great for reliable interpretation. The arm-leg task demonstrated that the bilateral deficit affects only homologous contralateral muscles. For the second experiment, two groups of subjects (bilateral deficit and bilateral facilitation) performed maximal left leg contractions while the right leg either rested or was activated with electrical stimulation. All subjects produced an increase in the maximal voluntary left leg force during right leg electromyostimulation. The magnitude of the increase was greatest for the bilateral facilitation subjects. These results suggest that interlimb interactions during maximal bilateral contractions are mediated by neural mechanisms.  相似文献   

9.
10.
In this study we evaluated the functionality and inflammatory effects of P2Y14 receptors in murine N9 microglia. The selective P2Y14 receptor agonist UDP-glucose (UDPG) derived from microbial sources dose dependently stimulated expression of cyclooxygenase-2 and inducible nitric oxide synthase, and potentiated the effects of bacterial lipopolysaccharide on nitric oxide production. However, another selective P2Y14 receptor agonist, UDP-galactose, did not affect these endpoints either alone or in combination with lipopolysaccharide. Interestingly, synthetic UDPG also had no detectable pro-inflammatory effects, although P2Y14 receptors are both expressed and functional in N9 microglia. While synthetic UDPG decreased levels of phosphorylated cyclic AMP response element binding protein, an effect that was blocked by pertussis toxin, the pro-inflammatory effects of microbial-derived UDPG were insensitive to pertussis toxin. These data suggest that the pro-inflammatory effects of microbial-derived UDPG are independent of P2Y14 receptors and imply that microbial-derived contaminants in the UDPG preparation may be involved in the observed inflammatory effects. An erratum to this article can be found at  相似文献   

11.
Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.  相似文献   

12.
Previous studies have established that growth hormone (GH) has many important effects on the regulation of cholesterol and lipoprotein metabolism. However, human GH (hGH) can also bind to prolactin receptors, eliciting prolactin receptor-mediated effects. In this study, we evaluated whether hGH can exert such responses in currently used animal models and whether prolactin affects lipoprotein and/or hepatic cholesterol metabolism. Normal and hypophysectomized (Hx) male rats were given either hGH or bovine GH, the latter unable to bind to the prolactin receptor. The hormones were continuously infused by use of subcutaneous osmotic mini-pumps for 7 days; blood and livers were collected after euthanasia. Both hormones stimulated hepatic LDL receptor expression and bile acid synthesis to a similar extent and normalized the altered plasma lipoprotein pattern in Hx rats. Prolactin, injected twice daily to Hx male rats, did not exert any effects on the plasma lipoprotein pattern or on cholesterol metabolism. We conclude that previously established effects of hGH on cholesterol metabolism are not mediated by prolactin in male rats.  相似文献   

13.
In this study, we investigated the mechanism of synergistic effects of cytokine and hyperthermia on cytotoxicity in HT-29. When cells were heated at 42°C in the presence of recombinant human tumor necrosis factor (rhTNF-α), recombinant interferon-gamma (rhIFN-γ), or in a combination of both, a synergistic increase in the cytotoxic effects of the respective drugs was observed. We hypothesized that alteration of cytokine or heat-induced polypeptides synthesis was responsible for a synergistic interaction between heat and cytokine. Five heat shock proteins (HSPs, Mr 110,000, 100,000, 90,000, 70,000, and 28,000) were preferentially synthesized during chronic heating at 42°C. In contrast, the synthesis of two proteins (Mr 60,000 and 29,000) was induced by treatment with rhIFN-γ (1,000 U/ml). Although the combination of chronic hyperthermia (42°C) with TNF-α, IFN-γ, or TNF-α + IFN-γ increased cytotoxicity, alteration/induction of polypeptides was not correlated with the synergistical cytotoxic effects of cytokine and heat. Thus, the synergistic effects of cytokine and hyperthermia are not mediated through an induction of polypeptides. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Natural killing (NK) in humans, as well as in other species, has been shown to be specific for antigenic determinants present on the surfaces of a variety of tumor cells. Physical separation of NK cells from K cells, which mediate antibody-dependent cellular cytotoxicity (ADCC), has not been successful; however, there is indirect evidence suggesting that these activities are distinct. To further study the relationship between NK and K cells, competitive inhibition techniques were employed. NK cells can be blocked via two mechanisms: 1) by direct inhibition with NK-sensitive tumor cells binding to NK receptor sites present on the effector cells and 2) by steric inhibition resulting from the binding of antibody-coated cells to the FcR on the effector cells. K cells, however, lack the NK receptor site(s) but are FcR+, and can therefore be blocked only by antibody-coated cells. We therefore postulate that NK and K cells are two separate lymphoid populations. NK cells bear receptor site(s) for NK determinants and FcR, whereas K cells bear only FcR.  相似文献   

15.
16.
Stressful treatments have long been associated with increased activity of brain catecholaminergic and serotonergic neurons. An intracerebroventricular (icv) injection of the corticotropin-releasing factor (CRF) also activates brain catecholaminergic neurons. Because brain CRF-containing neurons appear to be activated during stress, it is possible that CRF mediates the catecholaminergic activation. This hypothesis has been tested by assessing the responses in brain catecholamines and indoleamines to footshock in mice pretreated icv with a CRF receptor antagonist, and in mice lacking the gene for CRF (CRFko mice). Consistent with earlier results, icv administration of CRF increased catabolites of dopamine and norepinephrine, but failed to alter tryptophan concentrations or serotonin catabolism. A brief period of footshock increased plasma corticosterone and the concentrations of tryptophan and the catabolites of dopamine, norepinephrine and serotonin in several brain regions. Mice injected icv with 25 microg alpha-helical CRF(9-41) prior to footshock had neurochemical responses that were indistinguishable from controls injected with vehicle, while the increase in plasma corticosterone was slightly attenuated in some experiments. CRFko mice exhibited neurochemical responses to footshock that were indistinguishable from wild-type mice. However, whereas wild-type mice showed the expected increase in plasma corticosterone, there was no such increase in CRFko mice. Similarly, hypophysectomized mice also showed normal neurochemical responses to footshock, but no increase in plasma corticosterone. Hypophysectomy itself elevated brain tryptophan and catecholamine and serotonin metabolism. Treatment with ACTH icv or peripherally failed to induce any changes in cerebral catecholamines and indoleamines. These results suggest that CRF and its receptors, and ACTH and other pituitary hormones, are not involved in the catecholamine and serotonin responses to a brief period of footshock.  相似文献   

17.
Ubiquinones and tocopherols (vitamin E) are intrinsic lipid components which have a stabilizing function in many membranes attributed to their antioxidant activity. The antioxidant effects of tocopherols are due to direct radical scavenging. Although ubiquinones also exert antioxidant properties the specific molecular mechanisms of their antioxidant activity may be due to: (i) direct reaction with lipid radicals or (ii) interaction with chromanoxyl radicals resulting in regeneration of vitamin E. Lipid peroxidation results have now shown that tocopherols are much stronger membrane antioxidants than naturally occurring ubiquinols (ubiquinones). Thus direct radical scavenging effects of ubiquinols (ubiquinones) might be negligible in the presence of comparable or higher concentrations of tocopherols. In support of this our ESR findings show that ubiquinones synergistically enhance enzymic NADH- and NADPH-dependent recycling of tocopherols by electron transport in mitochondria and microsomes. If ubiquinols were direct radical scavengers their consumption would be expected. Further proving our conclusion HPLC measurements demonstrated that ubiquinone-dependent sparing of tocopherols was not accompanied by ubiquinone consumption.  相似文献   

18.
The tumor suppressor protein p53 has a major impact on organismal aging. Recently it has become clear that p53 not only controls DNA damage responses, senescence and apoptosis but also plays a major role in the control of autophagy. Thus, deletion, depletion, or inhibition of p53 induces autophagy in human, mouse and nematode cells. We therefore tested the hypothesis that the mutation of the p53 orthologue CEP-1 might increase the life span of Caenorhabditis elegans through an increase in baseline autophagy. For this, we evaluated the survival of nematodes lacking cep-1, alone or in combination with RNA inference with the autophagy gene bec-1 (which encodes the orthologue of Atg6/Beclin 1). cep-1 mutants exhibited a prolonged life span. While BEC-1 depletion during adult life did not cause significant modification of the life expectancy of wild type controls, it did reduce the increased life span of cep-1 mutants down to approximately normal levels. These results indicate that the life span-extending effect of the cep-1 mutation is mediated by autophagy. These results lend support to the hypothesis that autophagy has a broad positive impact on organismal aging.  相似文献   

19.
EGF and TGF-alpha induce an equipotent stimulation of fibroblast migration and proliferation. In spite of their homologous structure and ligation by the same receptor (EGFR), we report that their respective motogenic activities are mediated by different signal transduction intermediates, with p70(S6K) participating in EGF signalling and phospholipase Cgamma in TGF-alpha signalling. We additionally demonstrate that EGF and TGF-alpha motogenic activities may be resolved into two stages: (a) cell "activation" by a transient exposure to either cytokine, and (b) the subsequent "manifestation" of an enhanced migratory phenotype in the absence of cytokine. The cell activation and manifestation stages for each cytokine are mediated by distinct matrix-dependent mechanisms: motogenetic activation by EGF requires the concomitant functionality of EGFR and the hyaluronan receptor CD44, whereas activation by TGF-alpha requires EGFR and integrin alphavbeta3. Manifestation of elevated migration no longer requires the continued presence of exogenous cytokine and functional EGFR but does require the above mentioned matrix receptors, as well as their respective ligands, i.e., hyaluronan in the case of EGF, and vitronectin in the case of TGF-alpha. In contrast, the mitogenic activities of EGF and TGF-alpha are independent of CD44 and alphavbeta3 functionality. These results demonstrate clear qualitative differences between EGF and TGF-alpha pathways and highlight the importance of the extracellular matrix in regulating cytokine bioactivity.  相似文献   

20.
《Autophagy》2013,9(7):870-873
The tumor suppressor protein p53 has a major impact on organismal aging. Recently it has become clear that p53 does not only control DNA damage responses, senescence and apoptosis but that p53 has also a major role in the control of autophagy. Thus, deletion, depletion or inhibition of p53 induces autophagy in human, mouse and nematode cells. We therefore tested the hypothesis that the mutation of the p53 orthologue cep-1 might increase the lifespan of Caenorhabditis elegans through an increase in baseline autophagy. For this, we evaluated the survival of nematodes lacking cep-1, alone or in combination with RNA inference with the autophagy gene bec-1 (which encodes the orthologue of Atg6/Beclin 1). cep-1 mutants exhibited a prolonged life span. While bec-1 depletion during adult life did not cause significant modification of the life expectancy of wild type controls, it did reduce the increased life span of cep-1 mutants down to approximately normal levels. These results indicate that the life span-extending effect of the cep-1 mutation is mediated by autophagy. These results lend support to the hypothesis that autophagy has a broad positive impact on organismal aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号