首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
2.
The insulin-like growth factors (IGF) play an important role in fetal and postnatal development. Recently, the nucleotide sequences of the cDNAs encoding IGF-I and IGF-II and part of the human IGF genes were reported. In this communication we describe two distinct IGF-II cDNAs isolated from a human adult liver and a human hepatoma cDNA library, respectively. Using these two cDNAs, we have established that the human IGF-II gene contains at least 7 exons. Two different IGF-II promoters have been identified, 19 kilobases (kb) apart, which are active in a development-specific manner. The promoter, active in the adult stage, is located only 1.4 kb downstream from the insulin gene.  相似文献   

3.
4.
5.
Upregulation of insulin-like growth factor (IGF)-II expression has been reported for a variety of childhood and adulthood tumors. We determined IGF-II gene promoter usage in human cancerous and benign tissues by semiquantitative RT-PCR using P1-P4-specific primers. Although the human IGF-II gene structure is commonly thought to consist of nine exons and four promoters, we detected substantial utilization of a previously reported exon 4b, which is downstream of exon 4. Thus, exon 4b was intensively studied using 4b-specific primers. IGF-II gene promoter usage is highly variable in malignant and benign breast, prostate, and bladder tissues. While a majority of samples utilized P2-P4 promoters in a variety of combinations, when quantitated, P3 and P4 promoters were much more active than P2 promoter. This study not only demonstrated that IGF-II gene promoter usage is highly variable in malignant and benign tissues, but suggested that alternatively spliced exon 4b should be recognized as a 10th exon.  相似文献   

6.
7.
Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study 32P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyse rat Sm-C/IGF-I and IGF-II mRNAs in poly(A+) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobases (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. The abundance of a 7.5-kb Sm-C/IGF-I mRNA in poly(A+) RNAs from adult rat liver was 10-50-fold higher than in other adult rat tissues which provides further evidence that in the adult rat the liver is a major site of Sm-C/IGF-I synthesis and source of circulating Sm-C/IGF-I. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A+) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. Some samples of adult rat intestine contained the 4.7- and 3.9-kb IGF-II mRNAs and some samples of adult liver and lung contained the 4.7-kb mRNA. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded.  相似文献   

8.
9.
10.
11.
12.
13.
Recently we have found evidence that the human embryonic myosin alkali light chain (MLC1 emb) gene has two functional promoters and that its mRNAs exhibit heterogeneity in their 3'untranslated regions (UTR). To study this more in detail we have isolated and characterized the human MLC1emb gene. We focussed in particular on 2 kilobases of 5'flanking region and the alternative 3'UTRs. RNA primer extension and S1 mapping analyses revealed that the MLC1emb gene can indeed be driven either by a proximal or a distal promoter, both in fetal and adult cardiac tissue. These MLC1emb RNAs can contain either the proximal or distal 3'UTR. In contrast to this, in fetal as well as adult masseter muscle MLC1emb mRNA is predominantly transcribed from the proximal promoter and contains mainly the distal 3'UTR. These results explain the known heterogeneity of MLC1emb mRNAs. Finally, we present evidence that the murine MLC1emb gene also contains a functional distal promoter element which has hitherto been undetected.  相似文献   

14.
15.
16.
Promoters play key roles in conferring temporal, spatial, chemical, developmental, or environmental regulation of gene expression. Promoters that are subject to specific regulations are useful for manipulating foreign gene expression in plant cells, tissues, or organs with desirable patterns and under controlled conditions, and have been important for both basic research and applications in agriculture biotechnology. Recent advances in genomics technologies have greatly facilitated identification and study of promoters in a genome scale with high efficiency. Previously we have generated a large T-DNA tagged rice mutant library (TRIM), in which the T-DNA was designed with a gene/promoter trap system, by placing a promoter-less GUS gene next to the right border of T-DNA. GUS activity screens of this library offer in situ and in planta identifications and analyses of promoter activities in their native configurations in the rice genome. In the present study, we systematically performed GUS activity screens of the rice mutant library for genes/promoters constitutively, differentially, or specifically active in vegetative and reproductive tissues. More than 8,200 lines have been screened, and 11% and 22% of them displayed GUS staining in vegetative tissues and in flowers, respectively. Among the vegetative tissue active promoters, the ratio of leaf active versus root active is about 1.6. Interestingly, all the flower active promoters are anther active, but with varied activities in different flower tissues. To identify tissue specific ABA/stress up-regulated promoters, we compared microarray data of ABA/stress induced genes with those of tissue-specific expression determined by promoter trap GUS staining. Following this approach, we showed that the peroxidase 1 gene promoter was ABA up-regulated by 4 fold within 1 day of exposure to ABA and its expression is lateral root specific. We suggest that this be an easy bioinformatics approach in identifying tissue/cell type specific promoters that are up-regulated by hormones or other factors. Su-May Yu and Swee-Suak Ko equally contributed to this work.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号