首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution nuclear magnetic resonance spectra of permethylated and permethylated-reduced (LiAlH4) derivatives were recorded in chloroform solution for the following glycosphingolipids with known structure: lactotriaosylceramide, neolactotetraosylceramide (paragloboside), two blood group H-active pentaglycosylceramides (type 1 and type 2 saccharide chains, respectively), a B-active hexaglycosylceramide, an A-active hexaglycosylceramide, and an A-active octaglycosylceramide. Good quality and resolution allow a clear-cut diagnosis of α-anomeric protons of Fuc, Gal, and GalNAc, and in most cases of all β protons. Upon reduction there is a strong deshielding effect on H-1 of Gal of Galβ1 → 3GlcNAc but not on Gal of Galβ1 → 4GlcNAc. It is therefore possible to differentiate type 1 and type 2 chains by this method, a structural difference of importance for serological specificity. Nuclear magnetic resonance spectroscopy may therefore provide conclusive information on the anomeric structure of the immunodeterminant of blood group-active glycolipids using the same derivatives as for sequence analysis by mass spectrometry.  相似文献   

2.
The asparagine-linked sugar chains of the plasma membrane glycoproteins of rat erythrocytes were released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides were separated into a neutral and at least four acidic fractions by paper electrophoresis. The neutral oligosaccharide fraction was separated into at least 11 peaks upon Bio-Gel P-4 column chromatography. Structural studies of them by sequential exoglycosidase digestion in combination with methylation analysis revealed that they were a mixture of three high mannose-type oligosaccharides and at least 11 complex type oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAc as their cores and Galβ1 → 4GlcNAc, Galβ1 → 3Galβ1 → 4GlcNAc, and various lengths of Galβ1 → 4GlcNAc repeating chains in their outer chain moieties. Most of the complex-type Oligosaccharides were biantennary, and the tri- and tetraantennary Oligosaccharides contain only the Galβ1 → 3Galβ1 → 4GlcNAc group in their outer chain moieties.  相似文献   

3.
Four different H-type 1 (LedH) blood-group-active glycosphingolipids (LedH-I–IV) have been isolated from the plasma of blood-group O Le(a?b?) secretors. The agglutination of O Le(a?b?) erythrocytes from secretors by 50 μl of 4 hemagglutinating units of caprine anti-LedH (anti-H-type 1) serum was inhibited by 0.02 μg of each of all four glycolipids. No Lea or Leb activities or reaction against Ulex europaeus lectin could be found. LedH-I, -II, -III, and -IV at 0.05, 0.01, 0.01, and 0.02 μg each are sufficient for incubation in order to convert 9 × 107 O Le(a?b?) erythrocytes from nonsecretors into H-type 1 (LedH)-positive cells. Structural analysis of the H-type 1 glycolipids was performed in comparison to that of Lea- and Leb-blood-group-active glycolipids from human plasma isolated previously: Gas chromatography of peracetylated alditols revealed sugar composition. Combined gas chromatography-mass spectrometry established the glycosidic linkages. Together with the results obtained by direct inlet mass spectrometry of permethylated glycosphingolipids and by 360-MHz 1H nuclear magnetic resonance spectroscopy (Egge, H., and Hanfland, P., 1981, Arch. Biochem. Biophys., 210, 396–404; Dabrowski, J., Hanfland, P., Egge, H., and Dabrowski, U., 1981, Arch. Biochem. Biophys., 210, 405–411) the complete structures of the oligosaccharide chains of the Lea-, Leb-, and H-type 1-active glycolipids were established: Galβ1 → 3GlcNAc(4 ← 1αFuc)β1 → 3Galβ1 → 4Glcβ1 → 1 Cer for the Lea antigens; Fucα1 → 2Galβ1 → 3GlcNAc(4 ← 1αFuc)β1 → 3Galβ1 → 4Glcβ1 → 1 Cer for the Leb antigens; and Fucα1 → 2Galβ1 → 3GlcNAcβ1 → 3Galβ1 → 4Glcβ1 → 1 Cer for the H-type 1 (LedH) glycolipids. The diverse antigens of the same blood-group specificity obviously differ from one another in their lipid residue. In addition, plasmatic neolactotetraosylceramide could be identified, differing from that of human erythrocytes by a slower migration behavior in thin-layer chromatography.  相似文献   

4.
Certain Helicobacter pylori strains adhere to the human gastric epithelium using the blood group antigen-binding adhesin (BabA). All BabA-expressing H. pylori strains bind to the blood group O determinants on type 1 core chains, i.e. to the Lewis b antigen (Fucα2Galβ3(Fucα4)GlcNAc; Le(b)) and the H type 1 determinant (Fucα2Galβ3GlcNAc). Recently, BabA strains have been categorized into those recognizing only Le(b) and H type 1 determinants (designated specialist strains) and those that also bind to A and B type 1 determinants (designated generalist strains). Here, the structural requirements for carbohydrate recognition by generalist and specialist BabA were further explored by binding of these types of strains to a panel of different glycosphingolipids. Three glycosphingolipids recognized by both specialist and generalist BabA were isolated from the small intestine of a blood group O pig and characterized by mass spectrometry and proton NMR as H type 1 pentaglycosylceramide (Fucα2Galβ3GlcNAcβ3Galβ4Glcβ1Cer), Globo H hexaglycosylceramide (Fucα2Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), and a mixture of three complex glycosphingolipids (Fucα2Galβ4GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer, Fucα2Galβ3GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer, and Fucα2Galβ4(Fucα3)GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer). In addition to the binding of both strains to the Globo H hexaglycosylceramide, i.e. a blood group O determinant on a type 4 core chain, the generalist strain bound to the Globo A heptaglycosylceramide (GalNAcα3(Fucα2)Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), i.e. a blood group A determinant on a type 4 core chain. The binding of BabA to the two sets of isoreceptors is due to conformational similarities of the terminal disaccharides of H type 1 and Globo H and of the terminal trisaccharides of A type 1 and Globo A.  相似文献   

5.
In this study on milk saccharides of the raccoon (Procyonidae: Carnivora), free lactose was found to be a minor constituent among a variety of neutral and acidic oligosaccharides, which predominated over lactose. The milk oligosaccharides were isolated from the carbohydrate fractions of each of four samples of raccoon milk and their chemical structures determined by 1H-NMR and MALDI-TOF mass spectroscopies. The structures of the four neutral milk oligosaccharides were Fuc(α1–2)Gal(β1–4)Glc (2′-fucosyllactose), Fuc(α1–2)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (lacto-N-fucopentaose IV), Fuc(α1–2)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (fucosyl para lacto-N-neohexaose) and Fuc(α1–2)Gal(β1–4)GlcNAc(β1–3)[Fuc(α1–2)Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (difucosyl lacto-N-neohexaose). No type I oligosaccharides, which contain Gal(β1–3)GlcNAc units, were detected, but type 2 saccharides, which contain Gal(β1–4)GlcNAc units were present. The monosaccharide compositions of two of the acidic oligosaccharides were [Neu5Ac]1[Hex]6[HexNAc]4[deoxy Hex]2, while those of another two were [Neu5Ac]1[Hex]8[HexNAc]6[deoxy Hex]3. These acidic oligosaccharides contained α(2–3) or α(2–6) linked Neu5Ac, non reducing α(1–2) linked Fuc, poly N-acetyllactosamine (Gal(β1–4)GlcNAc) and reducing lactose.  相似文献   

6.
Glycolipid antigen reacting to the monoclonal antibody directed to the developmentally regulated antigen SSEA-1 was isolated from human erythrocytes and colonic adenocarcinoma. The antigens have the Lex (Galβl→4[Fucα]→3]GlcNAcβl→R) or Ley (Fucαl→2Galβl→4[Fucαl→3]GlcNAcβl→R) structure at the termini of the branched polylactosaminolipid. In addition, a novel polyfucosyl structure locating exclusively at the internal GlcNAc was detected in the tumor antigen. The antibody reacts with a simple monovalent Lex glycolipid (Galβl→4[Fucαl→3]GlcNAcβl→3Galβl→4Glcβl→Cer) previously isolated from colonic carcinoma when presented at a high density on liposomes. The antibody therefore may react to the bivalent or multivalent Lex or Ley structure.  相似文献   

7.
Human antithrombin III contains four asparagine-linked sugar chains in one molecule. The sugar chains were quantitatively released as radioactive oligosaccharides from the polypeptide portion by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. All of the oligosaccharides, thus obtained, contain N-acetylneuraminic acid. A same neutral nonaitol was released from all acidic oligosaccharides by sialidase treatment. By combination of the sequential exoglycosidase digestion and methylation analysis, their structures were elucidated as NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6-(NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc, Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6(NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manαl → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc, and NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6(Galβ1 → 4GlcNAcβ1 → 2Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc.  相似文献   

8.
Human chorionic gonadotropin (hCG) purified from placenta, like urinary hCG, is shown to have the sialylated forms of three neutral oligosaccharides: Galβ1→4GlcNAcβ1→2Manα1→6(Galβ1→4GlcNAcβ1→2Manα1→3)Manβ1→4GlcNAcβ1→4(Fucα1→6)GlcNAc (N-1), Galβ1→4GlcNAcβ1→2Manα1→6(Galβ1→4GlcNAcβ1→2Manα1→3)Manβ1→4GlcNAcβ1→4GlcNAc (N-2) and Manα1→6(Galβ1→4GlcNAcβ1→2Manα1→3)Manβ1→4GlcNAcβ1→4GlcNAc (N-3). Gel permeation chromatographic analysis of oligosaccharides released from α- and β-subunits of placental hCG has revealed that the α-subunit has one each of sialylated N-2 and N-3, while the β-subunit has one each of sialylated N-1 and N-2.  相似文献   

9.
Two major glycolipids accumulating in a human primary liver adenocarcinoma, but absent in normal liver, were characterized as lacto-N-fucopentaosyl(III)ceramide and difucosyllacto-N-nor-hexaosylceramide, (Galβ1→4[Fucα1→3]GlcNAcβ1→3Galβ1→4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glcβ1→1Cer), a new type of glycolipid with Lex-determinant. Comparison of glycolipids bearing Lex-determinant in various cases of human colonic adenocarcinoma, in adjacent normal mucosa tissue, and in erythrocytes reveals a possibility that glycolipids accumulating in human adenocarcinoma, but not in normal tissue, have a common structural unit as identified below:
  相似文献   

10.
Among the four acidic oligosaccharide fractions obtained by paper electrophoresis of the hydrazinolysate of the plasma membrane glycoproteins of rat erythrocytes, one was further separated into two by prolonged paper electrophoresis using 120-cm paper. Three fractions were mixtures of monosialyl oligosaccharides and two of disialyl oligosaccharides. After desialylation, their neutral portions were fractionated by Bio-Gel P-4 column chromatography and by affinity chromatography using a Con A-Sepharose column. Structural studies of the neutral oligosaccharides, thus obtained, indicated that at least 26 different complex-type oligosaccharides are present as a neutral portion of the acid oligosaccharides. Structurally they can be classified into bi-, tri-, and tetraantennary oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAcOT as their common cores. Galβ1 → 3Galβ1 → 4GlcNAc, Siaα2 → 3Galβ1 → 4GlcNAc, Siaα2 → 6Galβ1 → 4GlcNAc, and a series of Siaα2 → (Galβ1 → 4GlcNAcβ1 → 3)n · Galβ1 → 4GlcNAc were found as their outer chains. Their structures together with the structures of neutral oligosaccharides reported in the preceding paper indicated that the outer chain moieties of the asparagine-linked sugar chains of rat erythrocyte membrane glycoproteins are formed not by random concerted action of glycosyl transferases in Golgi membrane but by the mechanism in which the formation of one outer chain will regulate the elongation of others.  相似文献   

11.
Ralstonia solanacearum lectin (RSL), that might be involved in phytopathogenicity, has been defined as lFuc?Man specific. However, the effects of polyvalency of glycotopes and mammalian structural units on binding have not been established. In this study, recognition factors of RSL were comprehensively examined with natural multivalent glycotopes and monomeric ligands using enzyme linked lectin-sorbent and inhibition assays. Among the glycans tested, RSL reacted strongly with multivalent blood group Ah (GalNAcα1–3[Fucα1–2]Gal) and H (Fucα1–2Gal) active glycotopes, followed by Bh (Galα1–3[Fucα1–2]Gal), Lea (Galβ1–3[Fucα1–4]GlcNAc) and Leb (Fucα1–2Galβ1–3[Fucα1–4]GlcNAc) active glycotopes. But weak or negligible binding was observed for blood group precursors having Galβ1–3/4GlcNAcβ1- (Iβ/IIβ) residues or Galβ1–3GalNAcα1- (Tα), GalNAcα1-Ser/Thr (Tn) bearing glycoproteins. These results indicate that the density and degree of exposure of multivalent ligands of α1–2 linked lFuc to Gal at the non-reducing end is the most critical factor for binding. An inhibition study with monomeric ligands revealed that the combining site of RSL should be of a groove type to fit trisaccharide binding with highest complementarity to blood group H trisaccharide (HL; Fucα1–2Galβ1–4Glc). The outstandingly broad RSL saccharide-binding profile might be related to the unusually wide spectrum of plants that suffer from R. solanacearum pathogenicity and provide ideas for protective antiadhesion strategies.  相似文献   

12.
Blood group H antigen with globo-series structure, reacting with the monoclonal antibody MBrl, was isolated and characterized from human blood group O erythrocytes. The structure was identified by methylation analysis, direct probe mass spectrometry, and 1H-nuclear magnetic resonance spectroscopy as shown below: Fucαl → 2Galβl → 3GalNAcβl → 3Galαl → 4Galβl → 4Glcβl → 1Cer  相似文献   

13.
Enterotoxigenic Escherichia coli and Vibrio cholerae are well known causative agents of severe diarrheal diseases. Both pathogens produce AB5 toxins, with one enzymatically active A-subunit and a pentamer of receptor-binding B-subunits. The primary receptor for both B-subunits is the GM1 ganglioside (Galβ3GalNAcβ4(NeuAcα3)Galβ4GlcβCer), but the B-subunits from porcine isolates of E. coli also bind neolacto-(Galβ4GlcNAcβ-)terminated glycoconjugates and the B-subunits from human isolates of E. coli (hLTB) have affinity for blood group A type 2-(GalNAcα3(Fucα2)Galβ4GlcNAcβ-)terminated glycoconjugates.  相似文献   

14.
Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(α1-3)Gal(β1-4)Glc (α3′-galactosyllactose), Fuc(α1-2)Gal(β1-4)Glc (2′-fucosyllactose), Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (B-tetrasaccharide), GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (A-tetrasaccharide), Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)[Gal(α1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc; the saccharides from another animal: α3′-galactosyllactose, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]Glc, A-tetrasaccharide, GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)]Glc (A-pentasaccharide), Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)[Fuc(α1-3)]Glc (difucosylheptasaccharide) and Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3){Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had α-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  相似文献   

15.
Eight different fractions containing glycolipids with 1 to 8 hexoses in a linear sequence were isolated from rat small intestine. The structure of the major components was established by mass spectrometry and proton nuclear magnetic resonance spectroscopy of the permethylated and permethylated-reduced (LiAlH4) derivatives and by gas-liquid chromatography of degradation products of the native and permethylated or permethylated-reduced glycolipids. The major compounds were glucosylceramide, lactosylceramide, globotriaosylceramide, and a novel tetrahexosylceramide with the structure Gal α 1 → 3Galα1 → 4Galβ1 → 4Glcβ1 → 1Cer. In addition four minor compounds having five to eight hexoses were identified with the probable structures Galα1 → 3Galα1 → 3Galα1 → 4Galβ1 → 4Glcβ1 → 1Cer, Galα1 → 3Galα1 → 3Galα1 → 3Galα1 → 4Galβ1 → 4Glcβ1 → 1Cer, Gal1 → 3Gal1 → 3Gal1 → 3Gal1 → 3Gal1 → 4Gal1 → 4Glc1 → 1Cer, and Gal1 → 3Gal1 → 3Gal1 → 3Gal1 → 3Gal1 → 3Gal1 → 4Gal1 → 4Glc1 → 1Cer. In the pentahexosylceramide fraction a novel fucolipid was also present having the probable structure Fucα1 → 2Galα1 → 3Galα1 → 4Galβ1 → 4Galβ1 → 1Cer. The lipophilic part of the glycolipids was composed of trihydroxy 18:0 and dihydroxy 18:1 long-chain bases in combination with nonhydroxy and hydroxy 16:0–24:0 fatty acids. Glycolipid studies of isolated mucosal epithelial cells and the nonepithelial intestinal residue revealed a specific cell distribution of these hexosyl compounds. The two major components, glucosylceramide and globotriaosylceramide, were mainly located in the epithelial cells together with small amounts of lactosylceramide and tetrahexosylceramide. The epithelial cells practically lacked however the penta- to octahexosylceramides. The nonepithelial residue contained all hexosyl compounds. The fucolipid was exclusively present in the epithelial cells.  相似文献   

16.

The milk oligosaccharides were studied for two species of the Carnivora: the American black bear (Ursus americanus, family Ursidae, Caniformia), and the cheetah, (Acinonyx jubatus, family Felidae, Feliformia). Lactose was the most dominant saccharide in cheetah milk, while this was a minor saccharide and milk oligosaccharides predominated over lactose in American black bear milk. The structures of 8 neutral saccharides from American black bear milk were found to be Gal(β1–4)Glc (lactose), Fuc(α1–2)Gal(β1–4)Glc (2′-fucosyllactose), Gal(α1–3)Gal(β1–4)Glc (isoglobotriose), Gal(α1–3)[Fuc(α1–2)]Gal(β1–4)Glc (B-tetrasaccharide), Gal(α1–3)[Fuc(α1–2)]Gal(β1–4)[Fuc(α1–3)]Glc (B-pentasaccharide), Fuc(α1–2)Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–3)Gal(β1–4)Glc (difucosyl lacto-N-neotetraose), Gal(α1–3)Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–3)Gal(β1–4)Glc (monogalactosyl monofucosyl lacto-N-neotetraose) and Gal(α1–3)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (Galili pentasaccharide). Structures of 5 acidic saccharides were also identified in black bear milk: Neu5Ac(α2–3)Gal(β1–4)Glc (3′-sialyllactose), Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3)[Fuc(α1–2)Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (monosialyl monofucosyl lacto-N-neohexaose), Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3)[Gal(α1–3)Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (monosialyl monogalactosyl lacto-N-neohexaose), Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3){Gal(α1–3)Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–6)}Gal(β1–4)Glc (monosialyl monogalactosyl monofucosyl lacto-N-neohexaose), and Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3){Gal(α1–3)[Fuc(α1–2)]Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–6)}Gal(β1–4)Glc (monosialyl monogalactosyl difucosyl lacto-N-neohexaose). A notable feature of some of these milk oligosaccharides is the presence of B-antigen (Gal(α1–3)[Fuc(α1–2)]Gal), α-Gal epitope (Gal(α1–3)Gal(β1–4)Glc(NAc)) and Lewis x (Gal(β1–4)[Fuc(α1–3)]GlcNAc) structures within oligosaccharides. By comparison to American black bear milk, cheetah milk had a much smaller array of oligosaccharides. Two cheetah milks contained Gal(α1–3)Gal(β1–4)Glc (isoglobotriose), while another cheetah milk did not, but contained Gal(β1–6)Gal(β1–4)Glc (6′-galactosyllactose) and Gal(β1–3)Gal(β1–4)Glc (3′-galactosyllactose). Two cheetah milks contained Gal(β1–4)GlcNAc(β1–3)[Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (lacto-N-neohexaose), and one cheetah milk contained Gal(β1–4)Glc-3’-O-sulfate. Neu5Ac(α2–8)Neu5Ac(α2–3)Gal(β1–4)Glc (disialyllactose) was the only sialyl oligosaccharide identified in cheetah milk. The heterogeneity of milk oligosaccharides was found between both species with respect of the presence/absence of B-antigen and Lewis x. The variety of milk oligosaccharides was much greater in the American black bear than in the cheetah. The ratio of milk oligosaccharides-to-lactose was lower in cheetah (1:1–1:2) than American black bear (21:1) which is likely a reflection of the requirement for a dietary supply of N-acetyl neuraminic acid (sialic acid), in altricial ursids compared to more precocial felids, given the role of these oligosaccharides in the synthesis of brain gangliosides and the polysialic chains on neural cell adhesion.

  相似文献   

17.
Almond emulsin contains two kinds of α-l-fucosidases, which could be separated by gel filtration on Sephadex G-200. One enzyme hydrolyzed Fucα1 → 4GlcNAc and Fucα1 → 3GlcNAc linkages in milk oligosaccharides, but did not hydrolyze Fucα1→2Gal or Fucα1 → 6GlcNAc linkages. The other enzyme hydrolyzed the Fucα1 → 2Gal linkage in 2′-fucosyllactose, but did not appreciably hydrolyze other fucosyl linkages. Enzymological properties of the two α-l-fucosidases are described.  相似文献   

18.
By hydrazinolysis, oligosaccharides were released from fucose-labeled glycopeptides obtained from normal and polyoma-transformed baby hamster kidney cells, and their structures were comparatively analyzed. The oligosaccharides have the following structures, with different number of sialyl-galactosyl-N-acetylglucosaminyl outer chains: (±Siaα→Galβ→GlcNAcβ→)n(Manα→)2Manβ→GlcNAcβ→(Fucα→)GlcNAc, (in normal cells, n=2, 3 and 4, while in polyoma-transformed cells, n=2,3,4,5 and 6). Transformed cells are relatively rich in oligosaccharides with highly branched outer chains, as compared to normal cells.  相似文献   

19.
Free N-glycans (FNGs) are ubiquitous in growing plants. Further, acidic peptide:N-glycanase is believed to be involved in the production of plant complex-type FNGs (PCT-FNGs) during the degradation of dysfunctional glycoproteins. However, the distribution of PCT-FNGs in growing plants has not been analyzed. Here, we report the occurrence of PCT-FNGs in the xylem sap of the stem of the tomato plant.

Abbreviations: RP-HPLC: reversed-phase HPLC; SF-HPLC: size-fractionation HPLC; PA-: pyridylamino; PCT: plant complex type; Hex: hexose; HexNAc: N-acetylhexosamine; Pen: pentose; Deoxyhex: deoxyhexose; Man: D-mannose; GlcNAc: N-acetyl-D-glucosamine; Xyl: D-xylose; Fuc: L-fucose; Lea: Lewis a (Galβ1-3(Fucα1-4)GlcNAc); PCT: plant complex type; M3FX: Manα1-6(Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA; GN2M3FX: GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA; (Lea)1GN1M3FX: Galβ1-3(Fucα1-4)GlcNAc1-2 Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA or GlcNAc1-2Manα1-6(Galβ1-3(Fucα1-4)GlcNAc1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA.  相似文献   


20.
Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize α1,3-fucosylated GlcNAc and terminal β-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal β-Gal, and the glycoconjugates lack the Lewis x (Lex) antigen or other related fucose-containing antigens, such as sialylated Lex, Lea, Leb Ley, or H-type 1. Direct assays of parasite extracts demonstrate the presence of an α1,3-fucosyltransferase (α1,3FT) and β1,4-N-acetylgalactosaminyltransferase (β1,4GalNAcT), but not β1,4-galactosyltransferase. The H. contortus α1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galα1→4GlcNAcβ1→3Galβ1→4Glc to form lacto-N-fucopentaose III Galβ1→ 4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glc, which contains the Lex antigen, and the acceptor lacdiNAc (LDN) GalNAcβ1→4GlcNAc to form GalNAcβ1→4[Fucα1 →3]GlcNAc. The α1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 μ M and a Vmax of 10.8 nmol-mg?1 h?1. The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The α1,3FT acts best with type-2 glycan acceptors (Galβ1→4GlcNAcβ1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus α1,3FT can synthesize the Lex antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号