首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human interferon (huIFN) σ-4 α25–62/α164–166 is a genetically engineered hybrid that consists of residues 5–62 of huIFN α2 and residues 64–166 of huIFN α1. This variant contains four cysteine residues at positions 29, 86, 99 and 139, but does not contain the cysteine at position 1 that is characteristic of naturally occurring huIFN α subtypes. This novel recombinant hybrid was purified fromEscherichia coli to greater than 95% homogeneity. The purification was based on ethanol extraction of a trichloroacetic acid precipitate and Matrex Gel Blue A chromatography followed by either a selective precipitation or DEAE-Sepharose chromatography. The purified protein that was treated with 2-mercaptoethanol exhibited two closely migrating bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with apparent molecular weight values of 17 800 and 17 100, both of which exhibited antiviral activity. Electrophoresis performed without prior reduction with 2-mercaptoethanol indicated only a minor extent of intermolecular disulfide bonding. The purified protein exhibited a high specific antiviral activity of 7·107 units/mg when assayed on human fibroblast cells and, in distinction to the parental huIFN α2, it also demonstrated antiviral activity on murine L929 cells. The level of antiproliferative activity of huIFN δ-4 α25–62/α164–166 on various cell lines of different histological origin appeared to be more comparable to that of huIFN α1 than huIFN α2. The data suggest that huIFN δ-4 α25–62/α164–166 hybrid may be a useful tool for understanding huIFN structure-function relations.  相似文献   

2.
Immunochemical mapping of alpha-2 interferon   总被引:3,自引:0,他引:3  
A panel of five monoclonal antibodies, designated U1-U5, produced by murine hybridoma clones has been raised to recombinant interferon (IFN) alpha-2, and one monoclonal antibody, designated U6, has been raised to a mixture of cyanogen bromide fragments of IFN alpha-2. These antibodies have been characterized with respect to (1) neutralization of IFN antiviral and antiproliferative activities, (2) binding to four cloned IFN alpha subtypes (alpha-1, alpha-2, alpha-4, and alpha-7) that are naturally occurring and to two novel products of recombinant DNA technology (delta-4 alpha-1 and delta-4 alpha-2/alpha-1 hybrid), and (3) binding to three cyanogen bromide fragments of IFN alpha-2. Four of the six monoclonal antibodies inhibited IFN antiviral activity. In conjunction with the previously reported monoclonal antibodies III/21 [Arnheiter, H., Thomas, R. M., Leist, T., Fountoulakis, M., & Gutte, B. (1981) Nature (London) 294, 278-280] and NK-2 [Secher, D. S., & Burke, D. C. (1980) Nature (London) 285, 446-450], eight unique epitopes have been described. Analysis of cross-reactivity patterns with IFN alpha fragments and subtypes indicated that monoclonal antibodies U1 and NK-2, which neutralized both antiviral and antiproliferative activities, and U2, which was nonneutralizing in these assays, were directed to distinct epitopes located in a polypeptide consisting of the amino-terminal 15 amino acid residues linked to residues 60-110 by a disulfide bond. The epitope recognized by U1 was determined to reside, at least in part, between residues 5 and 15. Competitive binding studies indicated that neutralizing monoclonal antibody U3, which did not bind to any of the cyanogen bromide fragments, was directed to an epitope partially overlapping that of NK-2. Epitopes to which neutralizing monoclonal antibodies U3, U4, and U5 and nonneutralizing antibody U6 were directed were readily distinguished by cross-reactivity with IFN alpha subtypes. The nonneutralizing monoclonal antibody U6 was determined to be directed to an epitope between residues 22 and 58. The fact that delta-4 alpha-1 and the delta-4 alpha-2/alpha-1 hybrid were active in an antiviral assay indicated a lack of direct functional significance for the first four amino-terminal amino acid residues and the Cys1-Cys98 disulfide bond. However, reduction with 2-mercaptoethanol of IFN alpha-2 altered the integrity of four of the eight epitopes. These data support a critical role for disulfide linkages in maintaining the native conformation of IFN alpha-2 and provide a potential basis for predicting the location of functionally important domains.  相似文献   

3.
Three human IFN-alpha hybrids, HY-1 [IFN-alpha21a(1-75)/alpha2c(76-165)], HY-2 [IFN-alpha21a(1-95)/alpha2c(96-165)], and HY-3 [IFN-alpha2c(1-95)/alpha21a(96-166)], were constructed, cloned, and expressed. The hybrids had comparable specific antiviral activities on Madin-Darby bovine kidney (MDBK) cells but exhibited very different antiproliferative and binding properties on human Daudi and WISH cells and primary human lymphocytes. Our data suggest that a portion of the N-terminal region of the molecule is important for interaction with components involved in binding of IFN-alpha2b while the C-terminal portion of IFN is critical for antiproliferative activity. A domain affecting the antiproliferative activity was found within the C-terminal region from amino acid residues 75-166. The signal transduction properties of HY-2 and HY-3 were evaluated by EMSA and RNase protection assays. Both HY-2 and HY-3 induced activation of STAT1 and 2. However, HY-2 exhibited essentially no antiproliferative effects at concentrations that activated STAT1 and 2. Additionally, at concentrations where no antiproliferative activity was seen, HY-2 induced a variety of IFN-responsive genes to the same degree as HY-3. RNase protection assays also indicate that, at concentrations where no antiproliferative activity was seen for HY-2, this construct retained the ability to induce a variety of IFN-inducible genes. These data suggest that the antiproliferative response may not be solely directed by the activation of the STAT1 and STAT2 pathway in the cells tested.  相似文献   

4.
We have identified a mannosidase in rat liver that releases alpha 1----2, alpha 1----3 and alpha 1----6 linked manose residues from oligosaccharide substrates, MannGlcNAc where n = 4-9. The end product of the reaction is Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The mannosidase has been purified to homogeneity from a rat liver microsomal fraction, after solubilization into the aqueous phase of Triton X-114, by anion-exchange, hydrophobic and hydroxyapatite chromatography followed by chromatofocusing. The purified enzyme is a dimer of a 110-kDa subunit, has a pH optimum between 6.1 and 6.5 and a Km of 65 microM and 110 microM for the Man5GlcNAc-oligosaccharide or Man9GlcNAc-oligosaccharide substrates, respectively. Enzyme activity is inhibited by EDTA, by Zn2+ and Cu2+, and to lesser extent by Fe2+ and is stabilized by Co2+. The pattern of release of mannose residues from a Man6GlcNAc substrate shows an ordered hydrolysis of the alpha 1----2 linked residue followed by hydrolysis of alpha 1----3 and alpha 1----6 linked residues. The purified enzyme shows no activity against p-nitrophenyl-alpha-mannoside nor the hybrid GlcNAc Man5GlcNAc oligosaccharide. The enzyme activity is inhibited by swainsonine and 1-deoxymannojirimycin at concentrations 50-500-fold higher than required for complete inhibition of Golgi-mannosidase II and mannosidase I, respectively. The data indicate strongly that the enzyme has novel activity and is distinct from previously described mannosidases.  相似文献   

5.
Although gamma-aminobutyric acid type A receptor agonists and antagonists bind to a common site, they produce different conformational changes within the site because agonists cause channel opening and antagonists do not. We used the substituted cysteine accessibility method and two-electrode voltage clamping to identify residues within the binding pocket that are important for mediating these different actions. Each residue from alpha(1)T60 to alpha(1)K70 was mutated to cysteine and expressed with wild-type beta(2) subunits in Xenopus oocytes. Methanethiosulfonate reagents reacted with alpha(1)T60C, alpha(1)D62C, alpha(1)F64C, alpha(1)R66C, alpha(1)S68C, and alpha(1)K70C. gamma-Aminobutyric acid (GABA) slowed methanethiosulfonate modification of alpha(1)F64C, alpha(1)R66C, and alpha(1)S68C, whereas SR-95531 slowed modification of alpha(1)D62C, alpha(1)F64C, and alpha(1)R66C, demonstrating that different residues are important for mediating GABA and SR-95531 actions. In addition, methanethiosulfonate reaction rates were fastest for alpha(1)F64C and alpha(1)R66C, indicating that these residues are located in an open, aqueous environment lining the core of the binding pocket. Positively charged methanethiosulfonate reagents derivatized alpha(1)F64C and alpha(1)R66C significantly faster than a negatively charged reagent, suggesting that a negative subsite important for interacting with the ammonium group of GABA exists within the binding pocket. Pentobarbital activation of the receptor increased the rate of methanethiosulfonate modification of alpha(1)D62C and alpha(1)S68C, demonstrating that parts of the binding site undergo structural rearrangements during channel gating.  相似文献   

6.
The 73-kDa protease (73K protease) was purified from a clinical isolate of Serratia marcescens kums 3958. The purified protease appeared homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis in the presence or absence of 2-mercaptoethanol. The protease is active in a broad pH range with maximum activity at pH 7.5-8.0. The protease appeared to be a thiol protease, since it was inhibited by sulfhydryl reactive compounds such as p-chloromercuribenzoic acid, fluorescein mercuric acetate (FMA), iodoacetamide, and N-ethylmaleimide, and the protease activity was enhanced by various reducing agents such as cysteine, glutathione, 2-mercaptoethanol, and dithiothreitol. The protease contained 2 mol of free sulfhydryl residues per mol of protease. When the protease was reacted with FMA, a maximum of 2 mol of FMA per mol of enzyme was found reacted, based on fluorescence quenching in which the enzyme inactivation was paralleled linearly with the loss of both SH groups. This indicates possible equal involvement of the two thiol groups for the enzyme activity. The inactivation of the protease by FMA was partially restored by a dialysis in the presence of cysteine or dithiothreitol. The protease was not inhibited by high molecular weight kininogen but was inhibited by alpha 2-macroglobulin. The protease bound stoichiometrically to alpha 2-macroglobulin with 1:1 molar ratio and 25% activity remained constant even after the addition of 4 molar excess of alpha 2-macroglobulin. The protease extensively degraded IgG, IgA, fibronectin, fibrinogen, and alpha 1-protease inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Bovine interferon alpha C (IFN-alpha C) manifest at least 10(5)-fold lower antiviral activity on human cells than on bovine cells (Velan, B., Cohen, S., Grosfeld, H., Leitner, M., and Shafferman, A. (1985) J. Biol. Chem. 260, 5498-5504). By oligonucleotide site-directed mutagenesis within the coding region for the NH2-terminal 44-residue domain of BoIFN-alpha C, we replaced up to 18 residues by the corresponding HuIFN-alpha J1 residues. (HuIFN-alpha J1 is less than 60% homologous in sequence to BoIFN-alpha C.) The nine different bovine-human-IFN alpha hybrids obtained were compared to BoIFN-alpha C and HuIFN-alpha J1 with respect to their potential to induce an antiviral state, synthesis of 2-5A-synthetase, and their specific binding to human and bovine cells. Relative to BoIFN-alpha C, a gradual increase in biological activities (antiviral or 2-5A-synthetase) of approximately 10-, 10(2)-, 10(3)-, and approximately 10(4)-fold is obtained, depending on the number and positions of the residues substituted. A direct correlation exists between biological response and ability of IFN alpha to bind specifically to human cells. A BoIFN alpha molecule mutated in the 10-44 NH2-terminal domain was obtained which is 15, 8, and 35% as active as HuIFN-alpha J1 on human cells in specific binding, induction of antiviral, and 2-5A-synthetase activities, respectively. We concluded that at least 5 of the 12 residues at positions 10; 21, 22, 24; 27; 31, 34, 35, 37, 40; 42, 43 in the 10-44 NH2-terminal domain are critical for recognition of the human IFN-alpha cell receptor and for biological activity. These residues are found among 10 strictly conserved residues in all reported mammalian IFN alpha S, and they act in a cooperative manner to induce a biological response in human cells. The gap between the extent of improvement in binding capacity of the BoIFN alpha mutants on human cells and the corresponding biological response suggests that the primary signal of binding to the cell receptor is amplified within the cell. On bovine cells, HuIFN-alpha J1 and BoIFN-alpha C also compete for the same receptor, and it seems that at least part of the 10-44 NH2-terminal domain on IFN alpha is also involved in interaction with the bovine IFN alpha cell receptor.  相似文献   

8.
Palmitoylation is a reversible post-translational modification used by cells to regulate protein activity. The regulator of G-protein signaling (RGS) proteins RGS4 and RGS16 share conserved cysteine (Cys) residues that undergo palmitoylation. In the accompanying article (Hiol, A., Davey, P. C., Osterhout, J. L., Waheed, A. A., Fischer, E. R., Chen, C. K., Milligan, G., Druey, K. M., and Jones, T. L. Z. (2003) J. Biol. Chem. 278, 19301-19308), we determined that mutation of NH2-terminal cysteine residues in RGS16 (Cys-2 and Cys-12) reduced GTPase accelerating (GAP) activity toward a 5-hydroxytryptamine (5-HT1A)/G alpha o1 receptor fusion protein in cell membranes. NH2-terminal acylation also permitted palmitoylation of a cysteine residue in the RGS box of RGS16 (Cys-98). Here we investigated the role of internal palmitoylation in RGS16 localization and GAP activity. Mutation of RGS16 Cys-98 or RGS4 Cys-95 to alanine reduced GAP activity on the 5-HT1A/G alpha o1 fusion protein and regulation of adenylyl cyclase inhibition. The C98A mutation had no effect on RGS16 localization or GAP activity toward purified G-protein alpha subunits. Enzymatic palmitoylation of RGS16 resulted in internal palmitoylation on residue Cys-98. Palmitoylated RGS16 or RGS4 WT but not C98A or C95A preincubated with membranes expressing 5-HT1a/G alpha o1 displayed increased GAP activity over time. These results suggest that palmitoylation of a Cys residue in the RGS box is critical for RGS16 and RGS4 GAP activity and their ability to regulate Gi-coupled signaling in mammalian cells.  相似文献   

9.
Laminin alpha chains (alpha1-alpha5 chains) have diverse chain-specific biological functions. The LG4 modules of laminin alpha chains consist of a 14-stranded beta-sheet (A-N) sandwich structure. Several biologically active sequences have been identified in the connecting loop regions. Here, we evaluated the biological activities of the loop regions of the E and F strands in the LG4 modules using five homologous peptides from each of the mouse alpha chains (EF-1: DYATLQLQEGRLHFMFDLG, alpha1 chain 2747-2765; EF-2: DFGTVQLRNGFPFFSYDLG, alpha2 chain 2808-2826; EF-3: RDSFVALYLSEGHVIFALG, alpha3 chain 2266-2284; EF-4: DFMTLFLAHGRLVFMFNVG, alpha4 chain 1511-1529; EF-5: SPSLVLFLNHGHFVAQTEGP, alpha5 chain 3304-3323). These homologous peptides showed chain-specific cell attachment and neurite outgrowth activities. Well organized actin stress fibers and focal contacts with vinculin accumulation were observed in fibroblasts attached on EF-1, whereas fibroblasts on EF-2 and EF-4 showed filopodia with ruffling. Fibroblast attachment to EF-2 and EF-4 was mediated by syndecan-2. In contrast, EF-1 promoted alpha2beta1 integrin-mediated fibroblast attachment and inhibited fibroblast attachment to a recombinant laminin alpha1 chain LG4-5. The receptors for EF-3 and EF-5 are unknown. Further, when the active core sequence of EF-1 was cyclized, utilizing two additional cysteine residues at both the N and C termini through a disulfide bridge, the cyclic peptide significantly enhanced integrin-mediated cell attachment. These results indicate that integrin-mediated cell attachment to the EF-1 sequence is conformation-dependent and that the loop structure is important for the activity. The homologous peptides, which promote either integrin- or syndecan-mediated cell attachment, may be useful for understanding the cell type- and chain-specific biological activities of the laminins.  相似文献   

10.
11.
The closely related serpins squamous cell carcinoma antigen-1 and -2 (SCCA-1 and -2, respectively) are capable of inhibiting cysteine proteases of the papain superfamily. To ascertain whether the ability to inhibit cysteine proteases is an intrinsic property of serpins in general, the reactive center loop (RCL) of the archetypal serine protease inhibitor alpha(1)-antitrypsin was replaced with that of SCCA-1. It was found that this simple substitution could convert alpha(1)-antitrypsin into a cysteine protease inhibitor, albeit an inefficient one. The RCL of SCCA-1 is three residues longer than that of alpha(1)-antitrypsin, and therefore, the effect of loop length on the cysteine protease inhibitory activity was investigated. Mutants in which the RCL was shortened by one, two, or three residues were effective inhibitors with second-order rate constants of 10(5)-10(7) M(-)(1) s(-)(1). In addition to loop length, the identity of the cysteine protease was of considerable importance, since the chimeric molecules inhibited cathepsins L, V, and K efficiently, but not papain or cathepsin B. By testing complexes between an RCL-mimicking peptide and the mutants, it was found that the formation of a stable serpin-cysteine protease complex and the inhibition of a cysteine protease were both critically dependent on RCL insertion. The results strongly indicate that the serpin body is intrinsically capable of supporting cysteine protease inhibition, and that the complex with a papain-like cysteine protease would be expected to be analogous to that seen with serine proteases.  相似文献   

12.
G-proteins couple hormonal activation of receptors to the regulation of specific enzymes and ion channels. Gs and Gi are G-proteins which regulate the stimulation and inhibition, respectively, of adenylyl cyclase. We have constructed two chimeric cDNAs in which different lengths of the alpha subunit of Gs (alpha s) have been replaced with the corresponding sequence of the Gi alpha subunit (alpha i2). One chimera, referred to as alpha i(54)/s' replaces the NH2-terminal 61 amino acids of alpha s with the first 54 residues of alpha i. Within this sequence there are 7 residues unique to alpha s, and 16 of the remaining 54 amino acids are nonhomologous between alpha i and alpha s. The second chimera, referred to as alpha i/s(Bam), replaces the first 234 amino acids of alpha s with the corresponding 212 residues of alpha i. Transient expression of alpha i(54)/s in COS-1 cells resulted in an 18- to 20-fold increase in cyclic AMP (cAMP) levels, whereas expression of either alpha i/s(Bam) or the wild-type alpha s polypeptide resulted in only a 5- to 6-fold increase in cellular cAMP levels. COS-1 cells transfected with alpha i showed a small decrease in cAMP levels. Stable expression of the chimeric alpha i(54)/s polypeptide in Chinese hamster ovary (CHO) cells constitutively increased both cAMP synthesis and cAMP-dependent protein kinase activity. CHO clones expressing transfected alpha i/s(Bam) or the wild-type alpha s and alpha i cDNAs exhibited cAMP levels and cAMP-dependent protein kinase activities similar to those in control CHO cells. Therefore, the alpha i(54)/s chimera behaves as a constitutively active alpha s polypeptide, whereas the alpha i/s(Bam) polypeptide is regulated similarly to wild-type alpha s. Expression in cyc-S49 cells, which lack expression of wild-type alpha s, confirmed that the alpha i(54)/s polypeptide is a highly active alpha s molecule whose robust activity is independent of any change in intrinsic GTPase activity. The difference in phenotypes observed upon expression of alpha i(54)/s or alpha i/s(Bam) indicates that the NH2-terminal moieties of alpha s and alpha i function as attenuators of the effector enzyme activator domain which is within the COOH-terminal half of the alpha subunit. Mutation at the NH2 terminus of alpha s relieves the attenuator control of the Gs protein and results in a dominant active G-protein mutant.  相似文献   

13.
The relationship between neuronal alpha-bungarotoxin binding proteins (alpha BGTBPs) and nicotinic acetylcholine receptor function in the brain of higher vertebrates has remained controversial for over a decade. Recently, the cDNAs for two homologous putative ligand binding subunits, designated alpha BGTBP alpha 1 and alpha BGTBP alpha 2, have been isolated on the basis of their homology to the N terminus of an alpha BGTBP purified from chick brain. In the present study, a panel of overlapping synthetic peptides corresponding to the complete chick brain alpha BGTBP alpha 1 subunit and residues 166-215 of the alpha BGTBP alpha 2 subunits were tested for their ability to bind 125I-alpha BGT. The sequence segments corresponding to alpha BGTBP alpha 1-(181-200) and alpha BGTBP alpha 2-(181-200) were found to consistently and specifically bind 125I-alpha BGT. The ability of these peptides to bind alpha BGT was significantly decreased by reduction and alkylation of the Cys residues at positions 190/191, whereas oxidation had little effect on alpha BGT binding activity. The relative affinities for alpha BGT of the peptide sequences alpha BGTBP alpha 1-(181-200) and alpha BGTBP alpha 2-(181-200) were compared with those of peptides corresponding to the sequence segments Torpedo alpha 1-(181-200) and chick muscle alpha 1-(179-198). In competition assays, the IC50 for alpha BGTBP alpha 1-(181-200) was 20-fold higher than that obtained for the other peptides (approximately 2 versus 40 microM). These results indicate that alpha BGTBP alpha 1 and alpha BGTBP alpha 2 are ligand binding subunits able to bind alpha BGT at sites homologous with nAChR alpha subunits and that these subunits may confer differential ligand binding properties on the two alpha BGTBP subtypes of which they are components.  相似文献   

14.
15.
Thioredoxin (TRX) is one of major components of thiol reducing systems. To investigate the molecular mechanism of TRX function in the lung tissue, we screened a human lung epithelial cell cDNA library for TRX-binding protein by yeast two-hybrid systems. We isolated a plasmid containing C-propeptide region of human pro alpha 1 type 1 collagen (CP-pro alpha 1(1)). CP-pro alpha 1(1) stably binds to wild type TRX but not to mutant TRX, in which redox-active cysteine residues are substituted. Failure of the interaction of mutant TRX with CP-pro alpha 1(1) was confirmed in yeast two-hybrid systems. The CP-pro alpha 1(1)/TRX interaction was increased by dithiothreitol treatment, but was markedly inhibited by hydrogen peroxide or diamide treatment. These data showed that the reducing status of TRX active site cysteine residues is important for the TRX-CP-pro alpha 1(1) interaction, indicating that collagen biosynthesis is under the regulation of TRX-dependent redox control.  相似文献   

16.
We have determined the nucleotide and amino acid sequences of mouse alpha 2(IV) collagen which is 1707 amino acids long. The primary structure includes a putative 28-residue signal peptide and contains three distinct domains: 1) the 7 S domain (residues 29-171), which contains 5 cysteine and 8 lysine residues, is involved in the cross-linking and assembly of four collagen IV molecules; 2) the triple-helical domain (residues 172-1480), which has 24 sequence interruptions in the Gly-X-Y repeat up to 24 residues in length; and 3) the NC1 domain (residues 1481-1707), which is involved in the end-to-end assembly of collagen IV and is the most highly conserved domain of the protein. Alignment of the primary structure of the alpha 2(IV) chain with that of the alpha 1(IV) chain reported in the accompanying paper (Muthukumaran, G., Blumberg, B., and Kurkinen, M. (1989) J. Biol. Chem. 264, 6310-6317) suggests that a heterotrimeric collagen IV molecule contains 26 imperfections in the triple-helical domain. The proposed alignment is consistent with the physical data on the length and flexibility of collagen IV.  相似文献   

17.
Integrin alpha(5)beta(1), a major fibronectin receptor, functions in a wide variety of biological phenomena. We have found that alpha 2-8-linked oligosialic acids with 5 < or = degree of polymerization (DP) < or = 7 occur on integrin alpha(5) subunit of the human melanoma cell line G361. The integrin alpha(5) subunit immunoprecipitated with anti-integrin alpha(5) antibody reacted with the monoclonal antibody 12E3, which recognizes oligo/polysialic acid with DP > or = 5 but not with the polyclonal antibody H.46 recognizing oligo/polysialic acid with DP > or = 8. The occurrence of oligosialic acids was further demonstrated by fluorometric C(7)/C(9) analysis on the immunopurified integrin alpha(5) subunit. Oligosialic acids were also found in the alpha(5) subunit of several other human cells such as foreskin fibroblast and chronic erythroleukemia K562 cells. These results suggest the ubiquitous modification with unique oligosialic acids occurs on the alpha(5) subunit of integrin alpha(5)beta(1). The adhesion of human melanoma G361 cells to fibronectin was mainly mediated by integrin alpha(5)beta(1). Treatment of cells with sialidase from Arthrobacter ureafaciens cleaving alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids inhibited adhesion to fibronectin. On the other hand, N-acetylneuraminidase II, which cleaves alpha 2-3 and alpha 2-6 but not alpha 2-8 linkages, showed no inhibitory activity. After the loss of oligosialic acids, integrin alpha(5)beta(1) failed to bind to fibronectin-conjugated Sepharose, indicating that the oligosialic acid on the alpha(5) subunit of integrin alpha(5)beta(1) plays important roles in cell adhesion to fibronectin.  相似文献   

18.
19.
Ishiguro K  Ando T  Watanabe O  Goto H 《FEBS letters》2008,582(23-24):3531-3536
6-Shogaol and 6-gingerol are ginger components with similar chemical structures. However, while 6-shogaol damages microtubules, 6-gingerol does not. We have investigated the molecular mechanism of 6-shogaol-induced microtubule damage and found that the action of 6-shogaol results from the structure of alpha,beta-unsaturated carbonyl compounds. alpha,beta-Unsaturated carbonyl compounds such as 6-shogaol react with sulfhydryl groups of cysteine residues in tubulin, and impair tubulin polymerization. The reaction with sulfhydryl groups depends on the chain length of alpha,beta-unsaturated carbonyl compounds. In addition, alpha,beta-unsaturated carbonyl compounds are more reactive with sulfhydryl groups in tubulin than in 2-mercaptoethanol, dithiothreitol, glutathione and papain, a cysteine protease.  相似文献   

20.
The guanine nucleotide-binding proteins which mediate hormonal inhibition of adenylate cyclase as well as hormonal regulation of other membrane functions are alpha, beta, and gamma heterotrimers which are structurally homologous to each other. In brain, the predominant guanine nucleotide-binding component is a 39-kDa protein whose physiological role is as yet unknown. We have used N-ethylmaleimide to define functionally important sulfhydryl groups on alpha 39. Three cysteine residues in the molecule are reactive in unliganded alpha 39. Alkylation of two of these is reduced when guanosine 5'-(3'-O-thio)triphosphate (GTP gamma S) is bound. We have isolated and sequenced tryptic peptides containing the three reactive cysteines. The octapeptide containing the GTP gamma S-insensitive cysteine is at a position equivalent to amino acids 106-113 of the transducin alpha subunit (Lochrie, M. A., Hurley, J. B., and Simon, M. I. (1985) Science 228, 96-99). However, the equivalent peptide in transducin does not contain a cysteine residue. Alkylation of this cysteine blocks ADP-ribosylation of cysteine 351 by pertussis toxin. However, alkylation does not prevent association of alpha with the beta X gamma subunits nor does it inhibit GTPase activity. The two GTP gamma S-sensitive cysteines are at positions equivalent to cysteines 139 and 286 of the transducin alpha subunit. Alkylation of these residues inhibits GTPase activity. Neither of these GTP gamma S-sensitive cysteines are in those regions of alpha 39 which are highly homologous to the GTP-binding site of elongation factor Tu (Jurnak, F. (1985) Science 230, 32-36). However, both are present in the brain 41-kDa guanine nucleotide-binding protein and in the two transducins. The conservation of these cysteine residues suggests that they are important for the function of the subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号