首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Suspensions of Nitrosomonas europaea catalyzed the oxidation of the commercial nitrification inhibitor nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine]. Rapid oxidation of nitrapyrin (at a concentration of 10 μM) required the concomitant oxidation of ammonia, hydroxylamine, or hydrazine. The turnover rate was highest in the presence of 10 mM ammonia (0.8 nmol of nitrapyrin per min/mg of protein). The product of the reaction was 6-chloropicolinic acid. By the use of 18O2, it was shown that one of the oxygens in 6-chloropicolinic acid came from diatomic oxygen and that the other came from water. Approximately 13% of the radioactivity of [2,6-14C]nitrapyrin was shown to bind to cells. Most (94%) of the latter was bound indiscriminately to membrane proteins. The nitrapyrin bound to membrane proteins may account for the observed inactivation of ammonia oxidation.  相似文献   

2.
Ammonia oxidation, as measured by nitrite production, was inhibited by 2-chloro-6-trichloromethyl-pyridine (nitrapyrin, N-serve) in the methane-oxidizing bacterium,Methylosinus trichosporium OB3b, and the autotrophic nitrifying organisms,Nitrosococcus oceanus andNitrosomonas marina. 6-Chloropicolinic acid, a hydrolysis product of nitrapyrin, was ineffective as an inhibitor of ammonia oxidation by either the methanotroph or the autotrophs. Picolinic acid (2-carboxy-pyridine), in contrast, inhibited nitrification by the methane-oxidizing bacterium but not by the autotrophic cultures. Picolinic acid may provide a means for differentiating ammonia oxidation attributable to methanotrophs from that resulting from autotrophs in environmental studies.  相似文献   

3.
Abstract Both nitrapyrin and 6-chloropicolinic acid inhibited nitrite production when added to stationary-phase and exponentially growing cells of Nitrosomonas europaea at a concentration of 2.17 μM. Nitrapyrin inhibited growth immediately, but there was a lag before inhibition by chloropicolinic acid added to growing cells, and induction of a lag phase when this was added to stationary phase cells. There was no effect on the subsequent specific oxidation rate.  相似文献   

4.
Bacterial strain LW1, which belongs to the family Comamonadaceae, utilizes 1-chloro-4-nitrobenzene (1C4NB) as a sole source of carbon, nitrogen, and energy. Suspensions of 1C4NB-grown cells removed 1C4NB from culture fluids, and there was a concomitant release of ammonia and chloride. Under anaerobic conditions LW1 transformed 1C4NB into a product which was identified as 2-amino-5-chlorophenol by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This transformation indicated that there was partial reduction of the nitro group to the hydroxylamino substituent, followed by Bamberger rearrangement. In the presence of oxygen but in the absence of NAD, fast transformation of 2-amino-5-chlorophenol into a transiently stable yellow product was observed with resting cells and cell extracts. This compound exhibited an absorption maximum at 395 nm and was further converted to a dead-end product with maxima at 226 and 272 nm. The compound formed was subsequently identified by 1H and 13C NMR spectroscopy and mass spectrometry as 5-chloropicolinic acid. In contrast, when NAD was added in the presence of oxygen, only minor amounts of 5-chloropicolinic acid were formed, and a new product, which exhibited an absorption maximum at 306 nm, accumulated.  相似文献   

5.
Studies on the oxidation of ammonia by Nitrosomonas   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Free-energy calculations for pH7 showed that the oxidation of ammonia to hydroxylamine is endergonic and that the oxidations of hydroxylamine to nitrite and hydrazine to nitrogen are exergonic. It is suggested that the oxidation of ammonia requires the expenditure of energy. 2. The anaerobic dehydrogenation of hydrazine to nitrogen by extracts of the autotrophic nitrifying micro-organism, Nitrosomonas, in the presence of methylene blue as electron acceptor, was less rapid than the anaerobic dehydrogenation of hydroxylamine to nitric oxide. The inhibition by hydrazine of the dehydrogenation of hydroxylamine was attributed to substrate competition. 3. Whole cells in air did not produce nitrite from hydrazine. They produced nitrite from low concentrations of hydroxylamine more rapidly than from equimolar concentrations of ammonia; this result is consistent if hydroxylamine is an intermediate of the oxidation of ammonia. 4. The production of nitrite from hydroxylamine by whole cells was slightly inhibited by hydrazine, but the production of nitrite from ammonia was greatly inhibited and small amounts of hydroxylamine were formed. These results suggested that the dehydrogenation of hydroxylamine supplied energy required for the oxidation of ammonia and that hydroxylamine appeared because the energy production was replaced by that of the dehydrogenation of hydrazine. 5. The oxidation of hydroxylamine by whole cells was not inhibited by thiourea, but micromolar concentrations of the metal-binding agent markedly inhibited the oxidation of ammonia to hydroxylamine, suggesting that the oxidation of ammonia involved copper. A possible mechanism for the activation of ammonia is suggested.  相似文献   

6.
Bacterial strain LW1, which belongs to the family Comamonadaceae, utilizes 1-chloro-4-nitrobenzene (1C4NB) as a sole source of carbon, nitrogen, and energy. Suspensions of 1C4NB-grown cells removed 1C4NB from culture fluids, and there was a concomitant release of ammonia and chloride. Under anaerobic conditions LW1 transformed 1C4NB into a product which was identified as 2-amino-5-chlorophenol by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This transformation indicated that there was partial reduction of the nitro group to the hydroxylamino substituent, followed by Bamberger rearrangement. In the presence of oxygen but in the absence of NAD, fast transformation of 2-amino-5-chlorophenol into a transiently stable yellow product was observed with resting cells and cell extracts. This compound exhibited an absorption maximum at 395 nm and was further converted to a dead-end product with maxima at 226 and 272 nm. The compound formed was subsequently identified by 1H and 13C NMR spectroscopy and mass spectrometry as 5-chloropicolinic acid. In contrast, when NAD was added in the presence of oxygen, only minor amounts of 5-chloropicolinic acid were formed, and a new product, which exhibited an absorption maximum at 306 nm, accumulated.  相似文献   

7.
A microencapsulated multi-enzyme system has been used for the conversion of urea and ammonia into an amino acid, glutamate. The microencapsulated multi-enzyme system contains urease (E.C.3.5.1.5), glutamate dehydrogenase (E.C.1.4.1.3), and glucose-6-phosphate dehydrogenase (E.C.1.1.1.49). The conversion of urea into glutamate is achieved by the sequential reaction of urease and glutamate dehydrogenase; while glutamate dehydrogenase and glucose-6-phosphate dehydrogenase allow for the cyclic regeneration of NADP+:NADPH required for the reaction. The rate of production of glutamate is 1.3 μmole per min per ml of microcapsules. The encapsulated multi-enzyme system thus allows for the sequential enzyme reaction for the conversion of urea and ammonia into an amino acid.  相似文献   

8.
The influence of surface attachment and growth on inhibition of the ammonia oxidizing bacterium, Nitrosomonas europaea, by nitrapyrin was investigated in liquid culture in the presence and absence of glass slides. Significant attachment to glass slides occurred in the absence of ammonia, but the extent of attachment was not affected by nitrapyrin, nor by previous culture of cells in medium containing nitrapyrin. The presence of glass slides affected neither the specific growth rate of N. europaea, measured by changes in nitrite concentration, nor inhibition by nitrapyrin. Inhibitory effects of nitrapyrin on increases in nitrite concentration and in free cell concentration were similar, but greater effects were observed on changes in attached cell concentration. Established biofilms on glass slides grew at a lower specific growth rate than freely suspended cells. Both biofilm cells, and those detached from the biofilm, were protected from inhibition. A mechanism for protection of biofilm populations is proposed involving reduced sensitivity of slowly growing cells producing extracellular polymeric material. Offprint requests to.: J. I. Prosser.  相似文献   

9.
Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus   总被引:2,自引:0,他引:2  
The kinetics of ammonia oxidation and the ability of a marine ammonia-oxidizing bacterium, Nitrosococcus oceanus, to metabolize methane were investigated in semicontinuous batch culture. The effects of inhibitors (acetylene and nitrapyrin) and coreactants were determined in order to elucidate the behavior of the ammonia oxygenase enzyme in N. oceanus. Acetylene and nitrapyrin were potent inhibitors and their effects were not mitigated by increased ammonia concentrations. Oxygen concentration had the effect of a mixed-type inhibitor; reduced oxygen inhibited the rate or ammonia oxidation at high substrate concentration but may enhance the rate at low substrate concentrations. Substrate affinity in terms of NH 4 + increased (K m decreased) with increasing pH. Optimal pH was about 8. Methane inhibited ammonia oxidation; the interaction was not simple competitive inhibition and the presence of multiple active sites on the enzyme was indicated by the behaviour of the inhibited treatments. Half-saturation constants for methane (K i=6.6 M) and ammonia (K m=8.1 M) were similar. N. oceanus oxidized methanol and methane linearly over time, with CO2 and cell material being produced at approximately equal rates.  相似文献   

10.
Nitrapyrin or N-Serve [2-chloro-6-(trichloromethyl)pyridine] blocked methanogenesis associated with slurries of marine sediments. Both nitrapyrin and chloroform, an established inhibitor of methanogenic bacteria, were effective at micromolar concentrations. Chemical hydrolysis of nitrapyrin resulted in the release of three molar equivalents of chloride ions and the loss of its ability to inhibit methane production. Thus, the potency of nitrapyrin in blocking methanogenesis seemed to depend upon its trichloromethyl moiety; this conclusion was supported in experiments with other substituted pyridine compounds.  相似文献   

11.
Nitrapyrin inhibited growth, CH4 oxidation, and NH4+ oxidation, but not the oxidation of CH3OH, HCHO, or HCOONa, by Methylosinus trichosporium OB3b, suggesting that nitrapyrin acts against the methane monooxygenase enzyme system. The inhibition of CH4 oxidation could be reversed by repeated washing of nitrapyrin-inhibited cells, indicating that its effect is bacteriostatic. The addition of Cu2+ did not release the inhibition. Methane oxidation was also inhibited by 6-chloro-2-picoline. These data suggest that the mode of action of nitrapyrin on M. trichosporium is different from that on chemoautotrophic NH4+ oxidizers or methanogens.  相似文献   

12.
Cytochrome P-450 from liver microsomes of phenobarbital-treated rabbits catalyzed anaerobic dehalogenation of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) when combined with NADPH and NADPH-cytochrome P-450 reductase. Cytochromes P-450B1 and P-448 from liver microsomes of untreated rabbits were less active. Triton X-100 accelerated the reaction. Unlike anaerobic dehalogenation of halothane in microsomes, the major product was 2-chloro-1,1,1-trifluoroethane and 2-chloro-1,1-difluoroethylene was negligible. These products were not detected under aerobic conditions, and dehalogenation activity was inhibited by carbon monoxide, phenyl isocyanide and metyrapone.  相似文献   

13.
A kinetic model that describes substrate interactions during reductive dehalogenation reactions is developed. This model describes how the concentrations of primary electron-donor and -acceptor substrates affect the rates of reductive dehalogenation reactions. A basic model, which considers only exogenous electron-donor and -acceptor substrates, illustrates the fundamental interactions that affect reductive dehalogenation reaction kinetics. Because this basic model cannot accurately describe important phenomena, such as reductive dehalogenation that occurs in the absence of exogenous electron donors, it is expanded to include an endogenous electron donor and additional electron acceptor reactions. This general model more accurately reflects the behavior that has been observed for reductive dehalogenation reactions. Under most conditions, primary electron-donor substrates stimulate the reductive dehalogenation rate, while primary electron acceptors reduce the reaction rate. The effects of primary substrates are incorporated into the kinetic parameters for a Monod-like rate expression. The apparent maximum rate of reductive dehalogenation (q m, ap ) and the apparent half-saturation concentration (K ap ) increase as the electron donor concentration increases. The electron-acceptor concentration does not affect q m, ap , but K ap is directly proportional to its concentration.Definitions for model parameters RX halogenated aliphatic substrate - E-M n reduced dehalogenase - E-M n+2 oxidized dehalogenase - [E-M n ] steady-state concentration of the reduced dehalogenase (moles of reduced dehalogenase per unit volume) - [E-M n+2] steady-state concentration of the oxidized dehalogenase (moles of reduced dehalogenase per unit volume) - DH2 primary exogenous electron-donor substrate - A primary exogenous electron-acceptor substrate - A2 second primary exogenous electron-acceptor substrate - X biomass concentration (biomass per unit volume) - f fraction of biomass that is comprised of the dehalogenase (moles of dehalogenase per unit biomass) - stoichiometric coefficient for the reductive dehalogenation reaction (moles of dehalogenase oxidized per mole of halogenated substrate reduced) - stoichiometric coefficient for oxidation of the primary electron donor (moles of dehalogenase reduced per mole of donor oxidized) - stoichiometric coefficient for oxidation of the endogenous electron donor (moles of dehalogenase reduced per unit biomass oxidized) - stoichiometric coefficient for reduction of the primary electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - stoichiometric coefficient for reduction of the second electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - r RX rate of the reductive dehalogenation reaction (moles of halogenated substrate reduced per unit volume per unit time) - r d1 rate of oxidation of the primary exogenous electron donor (moles of donor oxidized per unit volume per unit time) - r d2 rate of oxidation of the endogenous electron donor (biomass oxidized per unit volume per unit time) - r a1 rate of reduction of the primary exogenous electron acceptor (moles of acceptor reduced per unit volume per unit time) - r a2 rate of reduction of the second primary electron acceptor (moles of acceptor reduced per unit volume per unit time) - k RX mixed second-order rate coefficient for the reductive dehalogenation reaction (volume per mole dehalogenase per unit time) - k d1 mixed-second-order rate coefficient for oxidation of the primary electron donor (volume per mole dehalogenase per unit time) - k d2 mixed-second-order rate coefficient for oxidation of the endogenous electron donor (volume per mole dehalogenase per unit time) - b first-order biomass decay coefficient (biomass oxidized per unit biomass per unit time) - k a1 mixed-second-order rate coefficient for reduction of the primary electron acceptor (volume per mole dehalogenase per unit time) - k a2 mixed-second-order rate coefficient for reduction of the second primary electron acceptor (volume per mole dehalogenase per unit time) - q m,ap apparent maximum specific rate of reductive dehalogenation (moles of RX per unit biomass per unit time) - K ap apparent half-saturation concentration for the halogenated aliphatic substrate (moles of RX per unit volume) - k ap apparent pseudo-first-order rate coefficient for reductive dehalogenation (volume per unit biomass per unit time)  相似文献   

14.
Eighty-one strains of bacteria were tested for their ability to catalyze the release of chloride ion from Dl-2-amino-4-chloro-4-pentenoic acid. A dehalogenating enzyme was obtained from the cells of Proteus mirabilis IFO 3849, which can use the l-isomer. The enzyme was constitutively produced. The conversion of l-2-amino-4-chloro-4-pentenoic acid to 2-keto-4-pentenoic acid, ammonia, and chloride ion was demonstrated. The reaction product, 2-keto-4-pentenoic acid, was isolated as its 2,4-dinitrophenylhydrazone and identified by catalytic hydrogenolysis of the hydrazone to the corresponding amino acid, norvaline.  相似文献   

15.
Soil emission of gaseous N oxides during nitrification of ammonium represents loss of an available plant nutrient and has an important impact on the chemistry of the atmosphere. We used selective inhibitors and a glucose amendment in a factorial design to determine the relative contributions of autotrophic ammonium oxidizers, autotrophic nitrite oxidizers, and heterotrophic nitrifiers to nitric oxide (NO) and nitrous oxide (N(2)O) emissions from aerobically incubated soil following the addition of 160 mg of N as ammonium sulfate kg. Without added C, peak NO emissions of 4 mug of N kg h were increased to 15 mug of N kg h by the addition of sodium chlorate, a nitrite oxidation inhibitor, but were reduced to 0.01 mug of N kg h in the presence of nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine], an inhibitor of autotrophic ammonium oxidation. Carbon-amended soils had somewhat higher NO emission rates from these three treatments (6, 18, and 0.1 mug of N kg h after treatment with glucose, sodium chlorate, or nitrapyrin, respectively) until the glucose was exhausted but lower rates during the remainder of the incubation. Nitrous oxide emission levels exhibited trends similar to those observed for NO but were about 20 times lower. Periodic soil chemical analyses showed no increase in the nitrate concentration of soil treated with sodium chlorate until after the period of peak NO and N(2)O emissions; the nitrate concentration of soil treated with nitrapyrin remained unchanged throughout the incubation. These results suggest that chemoautotrophic ammonium-oxidizing bacteria are the predominant source of NO and N(2)O produced during nitrification in soil.  相似文献   

16.
A general procedure to obtain tetra-substituted uric acid by stepwise N-alkylation is described. 2,6-Dichloropurine (1) was condensed with 1-propanol by Mitsunobu reaction to give 9-propyl congener (2). Treatment of 2 with ammonia gave adenine derivative (4a), which was converted to the 8-oxoadenine (5b) in 3 steps. Methylation of 5b proceeded site-specifically to give 6-amino-2-chloro-7,8-dihydro-7-methyl-9-propylpurin-8-one (6) as a sole product. Compound 6 was successively treated with NaNO2 and iodomethane to give 2-chloro-1,6,7,8-tetrahydro-1,7-dimethyl-9-propylpurin-6,8-dione (9) accompanied by the O6-methyl product (8) in 75% and 6.9%, respectively. After nucleophilic substitution of 9 with NaOAc, the product (11) was reacted with iodomethane to give the uric acid (12) and the 2-methoxy product (13) in 46% and 15.5%, respectively. However, the reaction of 11 with the benzylating agents gave only O-benzyl products (14a,b).  相似文献   

17.
Free radical production from the reaction of hydrazine and 1-acetyl-2-phenylhydrazine (AcPhHZ) with oxyhaemoglobin and with human red blood cells, has been observed by the electron spin resonance technique of spin trapping. Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the free radical intermediates detected depended on the hydrazine derivative, oxyhaemoglobin and the oxyhaem/hydrazine derivative concentration ratio.

The reaction of hydrazine with oxyhaemoglobin in the presence of DMPO gave a nitroxide which was identified as a reduced dimer of DMPO. Whereas hydrazine-treated red blood cells, in the presence of DMPO, gave a nitroxide spin adduct which was identified as the hydroxyl radical spin adduct of DMPO, 5,5-dimethyl-1-pyrrolidino-1-oxyl (DMPO-OH).

The reaction of AcPhHZ with oxyhaemoglobin, in the presence of DMPO, gave DMPO-OH, the phenyl radical spin adduct of DMPO, 5,5-dimethyl-2-phenylpyrrolidino-1-oxyl (DMPO-Ph) and an oxidised derivative of DMPO, 5,5-dimethyl-2-pyrrolidone-1-oxyl (DMPOX). The amounts of DMPO-Ph, DMPO-OH and DMPOX observed depended on the 1-acetyl-2-phenyl-hydrazine/oxyhaemoglobin concentration ratio; DMPOX replaced DMPO-OH as the concentration of AcPhHZ was decreased. DMPOX production has been previously associated with the production of highly oxidised haem iron-oxygen intermediates. AcPhHZ treated red blood cells gave DMPO-Ph and DMPO-OH spin adducts in the presence of DMPO.

DMPO had little to no effect on the rate of oxygen consumption by oxyhaemoglobin with hydrazine and AcPhHZ. Moreover, the rate of oxyhaemoglobin oxidation induced by hydrazine, was not decreased by DMPO whereas the rate of oxyhaemoglobin oxidation induced by AcPhHZ was decreased approx. 40% by DMPO. DMPO (10 mM) gave a small decrease in haemolysis and lipid peroxidation induced by 1 mM hydrazine and AcPhHZ in a 1% suspension of red blood cells.  相似文献   


18.
The reactivity of Br(-) and Cl(-) with triplet of anionic 6-chloropicolinic acid (pH = 5.4) and with triplets of 6-chloro and 6-bromopicolinic acids in zwitterionic forms (pH = 0.9) was studied by laser flash photolysis and steady-state irradiation. Br(-) was found to trap the three triplets. Triplet lifetime measurements gave quenching rate constants of 8 x 10(8) mol(-1) dm(3) s(-1) for the zwitterion of 6-chloropicolinic acid and of 3.4 x 10(5) mol(-1) dm(3) s(-1) for the anionic counterpart. No secondary transient species were observed indicating that the charge transfer intermediates are subject to dissipative processes. Cl(-) trapped triplet of zwitterions only, and reactions were found to be associated with a high quantum yield of radicals. The photolysis of 6-bromopicolinic acid photolysis was drastically enhanced by Cl(-), 6-chloropicolinic acid being produced with a chemical yield of about 90%. The 6-bromo-2-carboxypyridinyl radical could be characterized (lambda(max)/nm = 318 with shoulder at 370 nm and epsilon/mol(-1) dm(3) cm(-1) = 8100).  相似文献   

19.
N-[5-[N-(2-Amino-5-chloro-3,4-dihydro-4-oxoquinazolin-6-yl)methylamino]-2-thenoyl]-L-glutamic acid (6) and N-[5-[N-(5-chloro-3,4-dihydro-2-methyl-4-oxoquinazolin-6-yl)methylamino]-2-thenoyl]-L-glutamic acid (7), the first reported thiophene analogues of 5-chloro-5,8-dideazafolic acid, were synthesized and tested as inhibitors of tumor cell growth in culture. 4-Chloro-5-methylisatin (10) was converted stepwise to methyl 2-amino-5-methyl-6-chlorobenzoate (22) and 2-amino-5-chloro-3,4-dihydro-6-methyl-4-oxoquinazoline (19). Pivaloylation of the 2-amino group, followed by NBS bromination, condensation with di-tert-butyl N-(5-amino-2-thenoyl)-L-glutamate (28), and stepwise cleavage of the protecting groups with ammonia and TFA yielded. Treatment of 9 with acetic anhydride afforded 2,6-dimethyl-5-chlorobenz[1,3-d]oxazin-4-one (31), which on reaction with ammonia, NaOH was converted to 2,6-dimethyl-5-chloro-3,4-dihydroquinazolin-4-one (33). Bromination of, followed by condensation with and ester cleavage with TFA, yielded. The IC(50) of and against CCRF-CEM human leukemic lymphoblasts was 1.8+/-0.1 and 2.1+/-0.8 microM, respectively.  相似文献   

20.
The strains of Arthrobacter globiformis KZT1, Corynebacterium sepedonicum KZ4 and Pseudomonas cepacia KZ2 capable of early dehalogenation and complete oxidation of 4-chloro-, 2,4-dichloro-and 2-chlorobenzoic acids, respectively, have been analyzed for the origin of the genetic control of degradation. The occurrence and molecular sizes of plasmids in all the strains have been established. Plasmid pBS1501 was shown to control 4-chlorobenzoate dehalogenation in the case of KZT1 strain. The same possibility is proposed for plasmid pBS1502 for dehalogenation of 2,4DCBA by KZ4 strain. The chromosome localization of the genes controlling oxidation of 4-hydroxybenzoate in strain KZT1 is shown. Localization of the whole set of genes responsible for 2CBA degradation in the strain KZ2 chromosome is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号