首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present studies were carried out to evaluate the mechanisms by which PTH/PTHrP receptor (PTHR) activation influences cell viability. In 293 cells expressing recombinant PTHRs, PTH treatment markedly reduced the number of viable cells. This effect was associated with a marked apoptotic response including DNA fragmentation and the appearance of apoptotic nuclei. Similar effects were evidenced in response to serum withdrawal or to the addition of tumor necrosis factor (TNFalpha). Addition of caspase inhibitors or overexpression of bcl-2 partially abrogated apoptosis induced by serum withdrawal. Caspase inhibitors also protected cells from PTH-induced apoptosis, but overexpression of bcl-2 did not. The effects of PTH on cell number and apoptosis were neither mimicked by activators of the cAMP pathway (forskolin, isoproterenol) nor blocked by an inhibitor (H-89). However, elevation of Ca(i)2+ by addition of thapsigargin induced rapid apoptosis, and suppression of Ca(i)2+ by overexpression of the calcium- binding protein, calbindin D28k, inhibited PTH-induced apoptosis. The protein kinase C inhibitor GF 109203X partially inhibited PTH-induced apoptosis. Regulator of G protein signaling 4 (RGS4) (an inhibitor of the activity of the alpha-subunit of Gq) suppressed apoptotic signaling by the PTHR, whereas the C-terminal fragment of GRK2 (an inhibitor of the activity of the beta(gamma)-subunits of G proteins) was without effect. Chemical mutagenesis allowed selection of a series of 293 cell lines resistant to the apoptotic actions of PTH; a subset of these were also resistant to TNFalpha. These results suggest that 1) apoptosis produced by PTHR and TNF receptor signaling involve converging pathways; and 2) Gq-mediated phospholipase C/Ca2+ signaling, rather than Gs-mediated cAMP signaling, is required for the apoptotic effects of PTHR activation.  相似文献   

2.
The N-terminal 1-34 segments of both parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) bind and activate the same membrane-embedded G protein-coupled receptor (PTH1 Rc) present on the surface of cells in target tissues such as bone and kidney. This binding occurs in spite of major differences between the two hormones in their amino acid sequence. Recently, it was shown that in (1-34) PTH/PTHrP hybrid peptides, the N-terminal 1-14 segment of PTHrP is incompatible with the C-terminal 15-34 region of PTH in terms of bioactivity. The sites of incompatibility were identified at positions 5 in PTHrP and 19 in PTH. In the present paper we describe the synthesis, biological evaluation, and conformational characterization of two segmental hybrids: PTHrP(1-27)-[Tyr(34)]bPTH(28-34)-NH(2) (hybrid I) and PTHrP(1-18)-[Nal(23), Tyr(34)]bPTH(19-34)-NH(2) (hybrid II). Hybrid I is as active as PTH(1-34)NH(2) and more than two orders of magnitude more active than hybrid II. The conformational properties of the hybrids were studied in water/trifluoroethanol (TFE) mixtures and in aqueous solutions containing dodecylphosphocholine (DPC) micelles by CD, two-dimensional nmr and computer simulations. Upon addition of TFE to the aqueous solution, both hybrids undergo a coil-helix transition. The helix content in 1:1 water/TFE obtained by CD data is about 75% for both hybrids. In the presence of DPC, helix formation is observed at detergent concentrations above critical micellar concentration and the maximum helix content is of approximately 35 and approximately 30% for hybrid I and II, respectively. Combined nmr analysis, distance geometry, and molecular dynamics calculations suggest that, in both solvent systems, the biologically active hybrid I exhibits two flexible sites, centered at residues 12 and 19, connecting helical segments. The flexibility point at position 19 is not present in the poorly active hybrid II. Our findings support the hypothesis, proposed in our previous work, that in bioactive PTH analogues the presence and location of flexibility points between helical segments are essential for enabling them to fold into the bioactive conformation upon interaction with the PTH1 receptor.  相似文献   

3.
4.
Current antagonists for the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor (PTHR) are N-terminally truncated or N-terminally modified analogs of PTH(1-34) or PTHrP(1-34) and are thought to bind predominantly to the N-terminal extracellular (N) domain of the receptor. We hypothesized that ligands that bind only to PTHR region comprised of the extracellular loops and seven transmembrane helices (the juxtamembrane or J domain) could also antagonize the PTHR. To test this, we started with the J domain-selective agonists [Gln(10),Ala(12),Har(11),Trp(14),Arg(19) (M)]PTH(1-21), [M]PTH(1-15), and [M]PTH(1-14), and introduced substitutions at positions 1-3 that were predicted to dissociate PTHR binding and cAMP signaling activities. Strong dissociation was observed with the tri-residue sequence diethylglycine (Deg)(1)-para-benzoyl-l-phenylalanine (Bpa)(2)-Deg(3). In HKRK-B7 cells, which express the cloned human PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21), [Deg(1,3),Bpa(2),M]PTH(1-15), and [Deg(1,3),Bpa(2),M]PTH(1-14) fully inhibited (IC(50)s = 100-700 nm) the binding of (125)I-[alpha-aminoisobutyric acid(1,3),M]PTH(1-15) and were severely defective for stimulating cAMP accumulation. In ROS 17/2.8 cells, which express the native rat PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) antagonized the cAMP-agonist action of PTH(1-34), as did PTHrP(5-36) (IC(50)s = 0.7 microm, 2.6 microm, and 36 nm, respectively). In COS-7 cells expressing PTHR-delNt, which lacks the N domain of the receptor, [Deg(1,3),Bpa(2), M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) inhibited the agonist actions of [alpha-aminoisobutyric acid(1,3)]PTH(1-34) and [M]PTH(1-14) (IC(50)s approximately 1 microm), whereas PTHrP(5-36) failed to inhibit. [Deg(1,3),Bpa(2),M]PTH(1-14) inhibited the constitutive cAMP-signaling activity of PTHR-tether-PTH(1-9), in which the PTH(1-9) sequence is covalently linked to the PTHR J domain, as well as that of PTHR(cam)H223R. Thus, the J-domain-selective N-terminal PTH fragment analogs can function as antagonists as well as inverse agonists for the PTHR. The new ligands described should be useful for further studies of the ligand binding and activation mechanisms that operate in the critical PTHR J domain.  相似文献   

5.
Mechanisms of ligand binding to the PTH/PTHrP receptor (PTHR) were explored using PTH fragment analogs as radioligands in binding assays. In particular, the modified amino-terminal fragment analog, (125)I-[Aib(1,3),Nle8,Gln10,homoarginine11,Ala12,Trp14,Tyr15]rPTH(1-15)NH2, (125)I-[Aib(1,3),M]PTH(1-15), was used as a radioligand that we hypothesized to bind solely to the juxtamembrane (J) portion of the PTHR containing the extracellular loops and transmembrane helices. We also employed (125)I-PTH(1-34) as a radioligand that binds to both the amino-terminal extracellular (N) and J domains of the PTHR. Binding was examined in membranes derived from cells expressing either wild-type or mutant PTHRs. We found that the binding of (125)I-[Aib(1,3),M]PTH(1-15) to the wild-type PTHR was strongly (approximately 90%) inhibited by guanosine 5'-O-(3-thio)triphosphate (GTPgammaS), whereas the binding of (125)I-PTH(1-34) was only mildly (approximately 25%) inhibited by GTPgammaS. Of these two radioligands, only (125)I-[Aib(1,3),M]PTH(1-15) bound to PTHR-delNt, which lacks most of the receptor's N domain, and again this binding was strongly inhibited by GTPgammaS. Binding of (125)I-[Aib(1,3),M]PTH(1-15) to the constitutively active receptor, PTHR-H223R, was only mildly (approximately 20%) inhibited by GTPgammaS, as was the binding of (125)I-PTH(1-34). In membranes prepared from cells lacking Galpha(S) via knockout mutation of Gnas, no binding of (125)I-[Aib(1,3),M]PTH(1-15) was observed, but binding of (125)I-[Aib(1,3),M]PTH(1-15) was recovered by virally transducing the cells to heterologously express Galpha(S). (125)I-PTH(1-34) bound to the membranes with or without Galpha(S). The overall findings confirm the hypothesis that (125)I-[Aib(1,3),M]PTH(1-15) binds solely to the J domain of the PTHR. They further show that this binding is strongly dependent on coupling of the receptor to Galpha(S)-containing heterotrimeric G proteins, whereas the binding of (125)I-PTH(1-34) can occur in the absence of such coupling. Thus, (125)I-[Aib(1,3),M]PTH(1-15) appears to function as a selective probe of Galpha(S)-coupled, active-state PTHR conformations.  相似文献   

6.
PTH and PTHrP use the same G protein-coupled receptor, the PTH/PTHrP receptor (PTHR), to mediate their distinct biological actions. The extent to which the mechanisms by which the two ligands bind to the PTHR differ is unclear. We examined this question using several pharmacological and biophysical approaches. Kinetic dissociation and equilibrium binding assays revealed that the binding of [(125)I]PTHrP(1-36) to the PTHR was more sensitive to GTPgammaS (added to functionally uncouple PTHR-G protein complexes) than was the binding of [(125)I]PTH(1-34) ( approximately 75% maximal inhibition vs. approximately 20%). Fluorescence resonance energy transfer-based kinetic analyses revealed that PTHrP(1-36) bound to the PTHR more slowly and dissociated from it more rapidly than did PTH(1-34). The cAMP signaling response capacity of PTHrP(1-36) in cells decayed more rapidly than did that of PTH(1-34) (t(1/2) = approximately 1 vs. approximately 2 h). Divergent residue 5 in the ligand, Ile in PTH and His in PTHrP, was identified as a key determinant of the altered receptor-interaction responses exhibited by the two peptides. We conclude that whereas PTH and PTHrP bind similarly to the G protein-coupled PTHR conformation (RG), PTH has a greater capacity to bind to the G protein-uncoupled conformation (R(0)) and, hence, can produce cumulatively greater signaling responses (via R(0)-->RG isomerization) than can PTHrP. Such conformational selectivity may relate to the distinct modes by which PTH and PTHrP act biologically, endocrine vs. paracrine, and may help explain reported differences in the effects that the ligands have on calcium and bone metabolism when administered to humans.  相似文献   

7.
8.
9.
Yeagle PL  Albert AD 《Biochemistry》2003,42(6):1365-1368
G protein-coupled receptors (GPCRs) are a family of seven transmembrane helical proteins that initiate a cellular response to an environmental signal. Once activated by an extracellular signal, GPCRs trigger the intracellular signal transduction cascade by activating a heterotrimeric G protein. The interaction between the G protein and the receptor, which triggers the signal transduction, is the focus of intense interest. Three-dimensional structures of the ground state of only one GPCR, rhodopsin, are currently available, but since the G protein cannot bind to this structure, these structures did not lead to an understanding of the activation process. The recent publication of an excited state structure for the same GPCR (and comparison to the ground state structures), in conjunction with other recent biochemical data, provides new insight into G protein activation. We find that the structure data and the biochemical data, for the first time, point to a specific mode of interaction between the G protein and the receptor. Furthermore, we find that transducin (G(t)) must alter its conformation to bind to the activated receptor; the "lock and key" fit heretofore expected is likely not the correct model. We suggest that a conformational distortion, driven by the energy of binding, is induced in G(t) when it binds to the activated receptor. The conformational change in turn enables the exchange of GTP for GDP and the dissociation of the subunits. This is an example of "induced fit" originally proposed by Koshland to describe enzyme-substrate interactions.  相似文献   

10.
Genetic contributions to bone mineral density (BMD) and bone turnover are well known. In the present study, we analyzed the relationship between polymorphism of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor gene existing in exon M7 and the clinical characteristics of primary hyperparathyroidism (pHPT). PTH/PTHrP receptor genotypes were analyzed in 92 pHPT patients by direct sequence to determine whether nucleotide 1417 of the cDNA was C or T. BMD levels at the lumbar spine and at the radius before and one year after parathyroidectomy, as well as serum levels of calcium, phosphorus, alkaline phosphatase (ALP) and intact PTH were measured. Although there were no significant differences in serum levels of calcium, phosphorus and intact PTH, ALP was significantly lower in the CT genotype compared with the TT genotype. BMD level at the radius was significantly higher in the CT genotype than in the CC genotype. Moreover, an increase in radial BMD one year after parathyroidectomy was significantly less in CT genotype than two other genotypes (CC, TT). The present study is the first to indicate that the polymorphism of PTH/PTHrP receptor gene is closely related to the extent of bone mass reduction in pHPT and that this polymorphism would be one of the genetic factors responsible for the severity of the pathological state of pHPT.  相似文献   

11.
12.
Recent functional studies have suggested that position 19 in PTH interacts with the portion of the PTH-1 receptor (P1R) that contains the extracellular loops and seven transmembrance helices (TMs) (the J domain). We tested this hypothesis using the photoaffinity cross-linking approach. A PTHrP(1-36) analog and a conformationally constrained PTH(1-21) analog, each containing para-benzoyl-l-phenylalanine (Bpa) at position 19, each cross-linked efficiently to the P1R expressed in COS-7 cells, and digestive mapping analysis localized the cross-linked site to the interval (Leu232-Lys240) at the extracellular end of TM2. Point mutation analysis identified Ala234, Val235, and Lys240 as determinants of cross-linking efficiency, and the Lys240-->Ala mutation selectively impaired the binding of PTH(1-21) and PTH(1-19) analogs, relative to that of PTH(1-15) analogs. The findings support the hypothesis that residue 19 of the receptor-bound ligand contacts, or is close to, the P1R J domain-specifically, Lys240 at the extracellular end of TM2. The findings also support a molecular model in which the 1-21 region of PTH binds to the extracellular face of the P1R J domain as an alpha-helix.  相似文献   

13.
14.
G蛋白偶联受体激活丝裂原活化蛋白激酶的机理   总被引:2,自引:1,他引:1  
Zhu WZ  Han QD 《生理科学进展》1998,29(2):141-144
多种G蛋白偶联受体的均能激活丝裂原活化蛋白激酶。Gi蛋白偶联受体主要通过其βγ亚基,依赖Ras蛋白途径;在大多数哺乳类细胞中Gs蛋白偶联受体通过PKA途径抑制Ras依赖的MAPK活化,但在COS-7细胞,Gs蛋白偶联受体通过PKA途径使表达的MAPK活化;Gq蛋白偶联受体主要通过PKC途径依赖或非依赖于Ras使MAPK活化。MAPK信号途径中EGF受体,酪氨酸激酶及调节蛋白Shc等联级反应蛋白可能  相似文献   

15.
Expression of the human parathyroid hormone (PTH)/PTH-related peptide receptor (PTHR) gene is controlled by three promoters, P1-P3. P1 functions specifically in kidney, whereas P2 is ubiquitously active. P3 is also widely active, although more so in kidney than other tissues. However, only P2 functions at midgestation. We examined the role of methylation in controlling PTHR promoter activity. Function of all promoters was inhibited by CpG methylation in vitro. Significantly, P1 is selectively hypomethylated in adult kidney in vivo, strongly suggesting that demethylation is required for renal P1 function. Moreover, this pattern is established by 11. 75 weeks of fetal age, several weeks prior to the onset P1 activity. P3 is unmethylated at midgestation, although it is inactive at this stage of development, and thus exhibits characteristics of both tissue-specific and ubiquitously active promoters. These results show that adult methylation patterns of P1 and P3 are established several weeks prior to their induction, indicating that their function requires factors expressed late in development.  相似文献   

16.
The regulatory role of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) signaling has been implicated in embryonic skeletal development. Here, we studied chondrogenic differentiation of the mouse embryonal carcinoma-derived clonal cell line ATDC5 as a model of chondrogenesis in the early stages of endochondral bone development. ATDC5 cells retain the properties of chondroprogenitor cells, and rapidly proliferate in the presence of 5% FBS. Insulin (10 micrograms/ml) induced chondrogenic differentiation of the cells in a postconfluent phase through a cellular condensation process, resulting in the formation of cartilage nodules, as evidenced by expression of type II collagen and aggrecan genes. We found that differentiated cultures of ATDC5 cells abundantly expressed the high affinity receptor for PTH (Mr approximately 80 kD; Kd = 3.9 nM; 3.2 x 10(5) sites/cell). The receptors on differentiated cells were functionally active, as evidenced by a PTH-dependent activation of adenylate cyclase. Specific binding of PTH to cells markedly increased with the formation of cartilage nodules, while undifferentiated cells failed to show specific binding of PTH. Northern blot analysis indicated that expression of the PTH/PTHrP receptor gene became detectable at the early stage of chondrogenesis of ATDC5 cells, preceding induction of aggrecan gene expression. Expression of the PTH/PTHrP receptor gene was undetectable in undifferentiated cells. The level of PTH/PTHrP receptor mRNA was markedly elevated parallel to that of type II collagen mRNA. These lines of evidence suggest that the expression of functional PTH/PTHrP receptor is associated with the onset of chondrogenesis. In addition, activation of the receptor by exogenous PTH or PTHrP significantly interfered with cellular condensation and the subsequent formation of cartilage nodules, suggesting a novel site of PTHrP action.  相似文献   

17.
Protein kinase D (PKD)/protein kinase C mu is a serine/threonine protein kinase activated by growth factors, antigen-receptor engagement, and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires protein kinase C (PKC) activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular distribution of PKD was analyzed in live cells by imaging fluorescent protein-tagged PKD and in fixed cells by immunocytochemistry. We found that PKD shuttled between the cytoplasm and the nucleus in both fibroblasts and epithelial cells. Cell stimulation with mitogenic GPCR agonists that activate PKD induced a transient nuclear accumulation of PKD that was prevented by inhibiting PKC activity. The nuclear import of PKD requires its cys2 domain in conjunction with a nuclear import receptor, while its nuclear export requires its pleckstrin homology domain and a competent Crm1-dependent nuclear export pathway. This study thus characterizes the regulated nuclear transport of a signaling molecule in response to mitogenic GPCR agonists and positions PKD as a serine kinase whose kinase activity and intracellular localization is coordinated by PKC.  相似文献   

18.
The type 1 parathyroid hormore receptor (PTH1r) belongs to the class II family of G protein-coupled receptors. To delineate the sites in the PTH1r's N-terminal region, and the carboxy-core domain (transmembrane segments + extracellular loops) involved in PTH binding, we have evaluated the functional properties of 27 PTH1-secretin chimeras receptors stably expressed in HEK-293 cells. The wild type and chimeric receptors were analyzed for cell surface expression, binding for PTH and secretin, and functional responsiveness (cAMP induction) toward secretin and PTH. The expression levels of the chimeric receptors were comparable to that of the PTH1r (60-100%). The N-terminal region of PTH1r was divided into three segments that were replaced either singly or in various combinations with the homologous region of the secretin receptor (SECr). Substitution of the carboxy-terminal half (residues 105-186) of the N-terminal region of PTH1r for a SECr homologous segment did not reduced affinity for PTH but abolished signaling in response to PTH. This data indicate that receptor activation is dissociable from high affinity hormone binding in the PTH1r, and that the N-terminal region might play a critical role in the activation process. Further segment replacements in the N-termini focus on residues 105-186 and particularly residues 146-186 of PTH1r as providing critical segments for receptor activation. The data obtained suggest the existence of two distinct PTH binding sites in the PTH1r's N-terminal region: one site in the amino-terminal half (residues 1-62) (site 1) that participates in high-affinity PTH binding; and a second site of lower affinity constituted by amino acid residues scattered throughout the carboxy-terminal half (residues 105-186) (site 2). In the absence of PTH binding to site 1, higher concentrations of hormone are required to promote receptor activation. In addition, elimination of the interaction of PTH with site 2 results in a loss of signal transduction without loss of high-affinity PTH binding. Divers substitutions of the extracellular loops of the PTH1r highlight the differential role of the first- and third extracellular loop in the process of PTH1r activation after hormone binding. A chimera containing the entire extracellular domains of the PTH1r and the transmembrane + cytoplasmic domains of SECr had very low PTH binding affinity and did not signal in response to PTH. Further substitution of helix 5 of PTH1r in this chimera increased affinity for PTH that is close to the PTH affinity for the wild-type PTH1r but surprisingly, did not mediate signaling response. Additional substitutions of PTH1r's helices in various combinations emphasize the fundamental role of helix 3 and helix 6 on the activation process of the PTH1r. Overall, our studies demonstrated that several PTH1r domains contribute differentially to PTH binding affinity and signal transduction mechanism and highlight the role of the N-terminal domain and helix 3 and helix 6 on receptor activation.  相似文献   

19.
Nonvisual arrestins (arr) modulate G protein-coupled receptor (GPCR) desensitization and internalization and bind to both clathrin (CL) and AP-2 components of the endocytic coated pit (CP). This raises the possibility that endocytosis of some GPCRs may be a consequence of arr-induced de novo CP formation. To directly test this hypothesis, we examined the behavior of green fluorescent protein (GFP)-arr3 in live cells expressing beta2-adrenergic receptors and fluorescent CL. After agonist stimulation, the diffuse GFP-arr3 signal rapidly became punctate and colocalized virtually completely with preexisting CP spots, demonstrating that activated complexes accumulate in previously formed CPs rather than nucleating new CP formation. After arr3 recruitment, CP appeared larger: electron microscopy analysis revealed an increase in both CP number and in the occurrence of clustered CPs. Mutant arr3 proteins with impaired binding to CL or AP-2 displayed reduced recruitment to CPs, but were still capable of inducing CP clustering. In contrast, though constitutively present in CPs, the COOH-terminal moiety of arr3, which contains CP binding sites but lacks receptor binding, did not induce CP clustering. Together, these results indicate that recruitment of functional arr3-GPCR complexes to CP is necessary to induce clustering. Latrunculin B or 16 degrees C blocked CP rearrangements without affecting arr3 recruitment to CP. These results and earlier studies suggest that discrete CP zones exist on cell surfaces, each capable of supporting adjacent CPs, and that the cortical actin membrane skeleton is intimately involved with both the maintenance of existing CPs and the generation of new structures.  相似文献   

20.
The present study was performed to characterize the direct involvement of cAMP-dependent protein kinase (PKA) in the regulation of collagen synthesis by parathyroid hormone (PTH) and PTH-related peptide (PTHrP) in osteoblastic osteosarcoma cells, UMR-106. Sp-cAMPS (10(-4)M), a direct activator of PKA, as well as dibutyryl cAMP (dbcAMP, 10(-4)M) significantly inhibited collagen synthesis. Human (h) PTH-(1-34) (10(-7)M) and hPTHrP (10(-7) M) inhibited collagen synthesis to the same degree. Although Rp-cAMPS, which acted directly as an antagonist in the activation of PKA, did not affect collagen synthesis by itself, it significantly antagonized dbcAMP- and Sp-cAMPS-induced inhibition of collagen synthesis. Moreover, Rp-cAMPS antagonized PTH- and PTHrP-induced inhibition of collagen synthesis to the same degree. The present study first indicated that the activation of PKA was directly linked to the regulation of collagen synthesis by PTH in osteoblast and that PTHrP had the same effect on collagen synthesis presumably through the same mechanism as PTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号