共查询到20条相似文献,搜索用时 0 毫秒
1.
Tyrosine phosphorylation of a yeast 40 kDa protein occurs in response to mating pheromone. 总被引:5,自引:0,他引:5 下载免费PDF全文
Tyrosine phosphorylation of proteins in the yeast Saccharomyces cerevisiae has been examined following exposure to the mating pheromone alpha-factor. When a cells are treated with alpha-factor a protein of approximately 40 kDa molecular weight is tyrosine phosphorylated. This tyrosine phosphorylation response requires an intact signal transduction pathway, is not restricted to a short interval of the cell division cycle, and requires protein synthesis for its maximal accumulation. Mating competent fus3 deletion strains fail to elaborate the phosphotyrosine response. The possibility that FUS3 encodes the 40 kDa protein is discussed. 相似文献
2.
The C-terminus of the S. cerevisiae alpha-pheromone receptor mediates an adaptive response to pheromone 总被引:36,自引:0,他引:36
STE2 encodes a component of the S. cerevisiae alpha-pheromone receptor that is essential for induction of physiological changes associated with mating. Analysis of C-terminal truncation mutants of STE2 demonstrated that the essential sequences for ligand binding and signal transduction are included within a region containing seven putative transmembrane domains. However, truncation of the C-terminal 105 amino acids of the receptor resulted in a 4- to 5-fold increase in cell-surface pheromone binding sites, a 10-fold increase in pheromone sensitivity, a defect in recovery of cell division after pheromone treatment, and a defect in pheromone-induced morphogenesis. Overproduction of STE2 resulted in about a 6-fold increase in alpha-pheromone binding capacity but did not produce the other phenotypes associated with the ste2-T326 mutant receptor. We conclude that the C-terminus of the receptor is responsible for one aspect of cellular adaptation to pheromone that is distinct from adaptation controlled by the SST2 gene, for decreasing the stability of the receptor, and for some aspect of cellular morphogenesis. 相似文献
3.
Mutations in a gene encoding the alpha subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling. 总被引:9,自引:23,他引:9 下载免费PDF全文
Mutations which allowed conjugation by Saccharomyces cerevisiae cells lacking a mating pheromone receptor gene were selected. One of the genes defined by such mutations was isolated from a yeast genomic library by complementation of a temperature-sensitive mutation and is identical to the gene GPA1 (also known as SCG1), recently shown to be highly homologous to genes encoding the alpha subunits of mammalian G proteins. Physiological analysis of temperature-sensitive gpa1 mutations suggests that the encoded G protein is involved in signaling in response to mating pheromones. Mutational disruption of G-protein activity causes cell-cycle arrest in G1, deposition of mating-specific cell surface agglutinins, and induction of pheromone-specific mRNAs, all of which are responses to pheromone in wild-type cells. In addition, mutants can conjugate without the benefit of mating pheromone or pheromone receptor. A model is presented where the activated G protein has a negative impact on a constitutive signal which normally keeps the pheromone response repressed. 相似文献
4.
A family of genetically and structurally homologous complexes, the proteasome lid, Cop9 signalosome (CSN) and eukaryotic translation initiation factor 3, mediate different regulatory pathways. The CSN functions in numerous eukaryotes as a regulator of development and signaling, yet until now no evidence for a complex has been found in Saccharomyces cerevisiae. We identified a group of proteins, including a homolog of Csn5/Jab1 and four uncharacterized PCI components, that interact in a manner suggesting they form a complex analogous to the CSN in S. cerevisiae. These newly identified subunits play a role in adaptation to pheromone signaling. Deletants for individual subunits enhance pheromone response and increase mating efficiency. Overexpression of individual subunits or a human homolog mitigates sst2-induced pheromone sensitivity. Csi1, a novel CSN interactor, exhibits opposite phenotypes. Deletants also accumulate Cdc53/cullin in a Rub1-modified form; however, this role of the CSN appears to be distinct from that in the mating pathway. 相似文献
5.
G protein mutations that alter the pheromone response in Saccharomyces cerevisiae. 总被引:3,自引:8,他引:3 下载免费PDF全文
The GPA1 gene of Saccharomyces cerevisiae encodes a G alpha protein that couples the membrane-bound pheromone receptors to downstream elements in the mating response pathway. We have isolated seven mutant alleles of GPA1 that confer pheromone resistance: G50D (a glycine-to-aspartate change at position 50), G322E, G322R, E355K, E364K, G470D, and an E364K-G470D double mutant. All of the mutations lie within large regions that are highly conserved between Gpa1 and four other G alpha proteins; four of the changes are located in domains with proposed functions. On the basis of a gentic analysis, the pheromone-unresponsive GPA1 alleles can be divided into two classes: those that encode constitutively activated proteins and those that encode proteins unable to respond to the upstream signal. Our results support the hypothesis that the activated form of Gpa1 stimulates adaptation to pheromone. 相似文献
6.
MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. 总被引:17,自引:2,他引:17 下载免费PDF全文
K Doi A Gartner G Ammerer B Errede H Shinkawa K Sugimoto K Matsumoto 《The EMBO journal》1994,13(1):61-70
Pheromone-stimulated yeast cells and haploid gpa1 deletion mutants arrest their cell cycle in G1. Overexpression of a novel gene called MSG5 suppresses this inhibition of cell division. Loss of MSG5 function leads to a diminished adaptive response to pheromone. Genetic analysis indicates that MSG5 acts at a stage where the protein kinases STE7 and FUS3 function to transmit the pheromone-induced signal. Since loss of MSG5 function causes an increase in FUS3 enzyme activity but not STE7 activity, we propose that MSG5 impinges on the pathway at FUS3. Sequence analysis suggests that MSG5 encodes a protein tyrosine phosphatase. This is supported by the finding that recombinant MSG5 has phosphatase activity in vitro and is able to inactivate autophosphorylated FUS3. Thus MSG5 might stimulate recovery from pheromone by regulating the phosphorylation state of FUS3. 相似文献
7.
8.
Heterotrimeric G-protein subunit function in Candida albicans: both the alpha and beta subunits of the pheromone response G protein are required for mating 下载免费PDF全文
A pheromone-mediated signaling pathway that couples seven-transmembrane-domain (7-TMD) receptors to a mitogen-activated protein kinase module controls Candida albicans mating. 7-TMD receptors are typically connected to heterotrimeric G proteins whose activation regulates downstream effectors. Two Galpha subunits in C. albicans have been identified previously, both of which have been implicated in aspects of pheromone response. Cag1p was found to complement the mating pathway function of the pheromone receptor-coupled Galpha subunit in Saccharomyces cerevisiae, and Gpa2p was shown to have a role in the regulation of cyclic AMP signaling in C. albicans and to repress pheromone-mediated arrest. Here, we show that the disruption of CAG1 prevented mating, inactivated pheromone-mediated arrest and morphological changes, and blocked pheromone-mediated gene expression changes in opaque cells of C. albicans and that the overproduction of CAG1 suppressed the hyperactive cell cycle arrest exhibited by sst2 mutant cells. Because the disruption of the STE4 homolog constituting the only C. albicans gene for a heterotrimeric Gbeta subunit also blocked mating and pheromone response, it appears that in this fungal pathogen the Galpha and Gbeta subunits do not act antagonistically but, instead, are both required for the transmission of the mating signal. 相似文献
9.
SGV1 encodes a CDC28/cdc2-related kinase required for a G alpha subunit-mediated adaptive response to pheromone in S. cerevisiae. 总被引:14,自引:0,他引:14
The GPA1 gene of S. cerevisiae encodes a G alpha subunit that plays a positive role in the transduction of signals stimulating recovery from pheromone-induced cell cycle arrest. The GPA1Val50 mutation, in which Gly-50 is replaced by valine, causes hyperadaptation to pheromone. However, GPA1Val50 cells do not recover from division arrest in the absence of both CLN1 and CLN3, which encode G1 cyclins, indicating that the recovery-promoting activity of GPA1Val50 requires the function of G1 cyclins. An sgv1 mutation suppresses the hyperadaptive response caused by GPA1Val50 and also confers cold- and temperature-sensitive growth. The SGV1 gene encodes an apparent protein kinase homologous to CDC28/cdc2 kinase: SGV1 is 42% identical to CDC28. The activated mutation, CLN3-2, partially suppresses the growth defect of sgv1, suggesting that the SGV1 and CLN3 proteins may act in the same growth control pathway. 相似文献
10.
Plant heterotrimeric G protein beta subunit is associated with membranes via protein interactions involving coiled-coil formation 总被引:17,自引:0,他引:17
The new functional role of activated protein C (APC) in the regulation of tissue factor (TF) expression was investigated using the cultured human monoblastic leukemia U937 cell line. A flow cytofluorometric analysis demonstrated that treatment with APC resulted in time- and dose-dependent decrease in TF expression in unstimulated and phorbol ester-stimulated cells. The effect was antagonized by the monoclonal antibody (mAb) to endothelial protein C/APC receptor (EPCR), 252, which strongly inhibited the interaction between APC and EPCR. In contrast, mAbs 49 and 379, which bind to EPCR without blocking APC binding, had no or only a modest effect. It is concluded that culturing U937 cells in the presence of APC caused down-regulation of TF expression through the EPCR-dependent mechanism, independent of whether induction was triggered by phorbol ester. 相似文献
11.
The yeast STE18 gene product has sequence and functional similarity to the gamma subunits of G proteins. The cloned STE18 gene was subjected to a saturation mutagenesis using doped oligonucleotides. The populations of mutant genes were screened for two classes of STE18 mutations, those that allowed for increased mating of a strain containing a defective STE4 gene (compensators) and those that inhibited mating even in the presence of a functional STE18 gene (dominant negatives). Three amino acid substitutions that enhanced mating in a specific STE4 (G beta) point mutant background were identified. These compensatory mutations were allele specific and had no detectable phenotype of their own; they may define residues that mediate an association between the G beta and G gamma subunits or in the association of the G beta gamma subunit with other components of the signalling pathway. Several dominant negative mutations were also identified, including two C terminal truncations. These mutant proteins were unable to function in signal transduction by themselves, but they prevented signal transduction mediated by pheromone, as well as the constitutive signalling which is present in cells defective in the GPA1 (G alpha) gene. These mutant proteins may sequester G beta or some other component of the signalling machinery in a nonfunctional complex. 相似文献
12.
The a-factor pheromone of Saccharomyces cerevisiae is essential for mating. 总被引:25,自引:17,他引:25 下载免费PDF全文
The Saccharomyces cerevisiae pheromone a-factor is produced by a cells and interacts with alpha cells to cause cell cycle arrest and other physiological responses associated with mating. Two a-factor structural genes, MFA1 and MFA2, have been previously cloned with synthetic probes based on the a-factor amino acid sequence (A. Brake, C. Brenner, R. Najarian, P. Laybourn, and J. Merryweather, cited in M.-J. Gething [ed.], Protein transport and secretion, 1985). We have examined the function of these genes in a-factor production and mating by construction and analysis of chromosomal null mutations. mfa1 and mfa2 single mutants each exhibited approximately half the wild-type level of a-factor activity and were proficient in mating, whereas the mfa1 mfa2 double mutant produced no a-factor and was unable to mate. These results demonstrate that both genes are functional, that each gene makes an equivalent contribution to the a-factor activity and mating capacity of a cells, and that a-factor plays an essential role in mating. Strikingly, exogenous a-factor did not alleviate the mating defect of the double mutant, suggesting that an a cell must be producing a-factor to be an effective mating partner. 相似文献
13.
Expression of the BAR1 gene in Saccharomyces cerevisiae: induction by the alpha mating pheromone of an activity associated with a secreted protein. 总被引:14,自引:1,他引:14 下载免费PDF全文
T R Manney 《Journal of bacteriology》1983,155(1):291-301
We have demonstrated and partially characterized the genetic control and pheromonal regulation of a soluble activity, produced only by mating-type a cells, that inhibits the action of the alpha mating pheromone, alpha-factor, on mating-type a cells. This activity was found to be associated with a heat-stable protein and to be secreted by MATa BAR1, mat alpha 2 BAR1, and mat alpha 1 mat alpha 2 BAR1 strains, but not by MAT alpha BAR1, MATa/MAT alpha BAR1, mat alpha 1 BAR1, or MATa barl strains, demonstrating that it is under the control of both the MAT alpha 2 and the BAR1 genes. Secretion of this activity was also found to be stimulated to as much as five times the basal level by exposure of the cells to alpha-factor. This stimulation was maximal after 6 h at a pheromone concentration of approximately 2 U/ml. An assay for this activity was developed by using a refined, quantitative assay for alpha-factor. The pheromone activity of samples added to wells in an agar plate was related to the size of the halo of growth inhibition produced in a lawn of mutant cells that are abnormally sensitive. The alpha-factor-inhibiting activity was related to a reduction of the halo size when active samples were added to the lawn. Although the assay for alpha-factor was found to be relatively insensitive to pH over a range of several units, the alpha-factor-inhibiting activity displayed a sharp pH optimum at approximately 6.5. The properties of this activity have important implications concerning the role of the BAR1 gene product in recovery of mating-type a cells from cell division arrest by alpha-factor. 相似文献
14.
The mating-specific G(alpha) protein of Saccharomyces cerevisiae downregulates the mating signal by a mechanism that is dependent on pheromone and independent of G(beta)(gamma) sequestration. 总被引:1,自引:0,他引:1 下载免费PDF全文
It has been inferred from compelling genetic evidence that the pheromone-responsive G(alpha) protein of Saccharomyces cerevisiae, Gpa1, directly inhibits the mating signal by binding to its own beta(gamma) subunit. Gpa1 has also been implicated in a distinct but as yet uncharacterized negative regulatory mechanism. We have used three mutant alleles of GPA1, each of which confers resistance to otherwise lethal doses of pheromone, to explore this possibility. Our results indicate that although the G322E allele of GPA1 completely blocks the pheromone response, the E364K allele promotes recovery from pheromone treatment rather than insensitivity to it. This observation suggests that Gpa1, like other G(alpha) proteins, interacts with an effector molecule and stimulates a positive signal--in this case, an adaptive signal. Moreover, the Gpa1-mediated adaptive signal is itself induced by pheromone, is delayed relative to the mating signal, and does not involve sequestration of G(beta)(gamma). The behavior of N388D, a mutant form of Gpa1 predicted to be activated, strongly supports these conclusions. Although N388D cannot sequester beta(gamma), as evidenced by two-hybrid analysis and its inability to complement a Gpa1 null allele under normal growth conditions, it can stimulate adaptation and rescue a gpa1(delta) strain when cells are exposed to pheromone. Considered as a whole, our data suggest that the pheromone-responsive heterotrimeric G protein of S. cerevisiae has a self-regulatory signaling function. Upon activation, the heterotrimer dissociates into its two subunits, one of which stimulates the pheromone response, while the other slowly induces a negative regulatory mechanism that ultimately shuts off the mating signal downstream of the receptor. 相似文献
15.
G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment 总被引:47,自引:0,他引:47
Hyperphosphorylation of the retinoblastoma protein (pRB) is assumed to be a regulatory event leading to the inactivation of its growth-repressing functions. We demonstrate a functional alteration linked to the phosphorylation status of the protein. The un- or under-phosphorylated species are tightly associated with the nuclear structure. The association is resistant to digestion with nucleases, and release requires elevated salt concentrations. In contrast, the hyperphosphorylated species are eluted under hypotonic buffer conditions. The conversion from low salt-resistant to low salt-extractable pRB occurs with transition through the G1/S boundary of the cell cycle and thus parallels the reported onset of pRB phosphorylation. The ability to form a tight nuclear association is impaired in several naturally occurring pRB mutants, all of which show alterations within the binding region for viral oncoproteins. We suggest that the tight nuclear interaction is essential for the growth-regulating functions of pRB and may be preempted by viral oncoproteins. 相似文献
16.
17.
C B Xue E Eriotou-Bargiota D Miller J M Becker F Naider 《The Journal of biological chemistry》1989,264(32):19161-19168
An analog of alpha-factor, the Saccharomyces cerevisiae tridecapeptide mating pheromone (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr), in which the side chains of Lys7 and Gln10 were covalently linked, was synthesized using solid phase methodologies. The yield of the purified cyclic analog cyclo7,10[Nle12]alpha-factor was 30%, and its structure was verified by amino acid analysis, peptide sequencing, fast atom bombardment-mass spectrometry, and proton nuclear magnetic resonance spectroscopy. Cyclo7,10[Nle12]alpha-factor caused growth arrest and morphological alterations in S. cerevisiae MATa cells qualitatively identical to those induced by linear pheromone and was one-fourth to one-twentieth as active as the linear alpha-factor depending upon the S. cerevisiae strain tested. Consistent with the relative activities of the linear and cyclic peptides, binding competition studies indicated that cyclo7,10[Nle12]alpha-factor had approximately 20-40-fold less affinity for the alpha-factor receptor. Hydrolysis of the cyclic peptide by the target cells did not lead to opening of the ring and was less rapid than that of linear alpha-factor. The alpha-factor antagonist des-Trp1-[Ala3,Nle12]alpha-factor reversed the activity of the cyclic analog, and cyclo7,10[Nle12]alpha-factor was not active at the restrictive temperature in a temperature-sensitive receptor mutant. These results support the conclusion that the cyclic alpha-factor occupies the same binding site within the receptor as is occupied by the natural pheromone. The cyclic alpha-factor represents a rare example of an agonist among covalently constrained congeners of small linear peptide messengers. 相似文献
18.
S. cerevisiae alpha pheromone receptors activate a novel signal transduction pathway for mating partner discrimination. 总被引:11,自引:0,他引:11
Wild-type S. cerevisiae cells of both mating types prefer partners producing high levels of pheromone and mate very infrequently to cells producing no pheromone. However, some mutants that are supersensitive to pheromone lack this ability to discriminate. In this study, we provide evidence for a novel role of alpha pheromone receptors in mating partner discrimination that is independent of the known G protein-mediated signal transduction pathway. Furthermore, in response to pheromone, receptors become localized to the emerging region of morphogenesis that is positioned adjacent to the nucleus, suggesting that receptor localization may be involved in mating partner discrimination. Actin, myosin 2, and clathrin heavy chain are involved in mating partner discrimination, since strains carrying mutations in the genes encoding these proteins result in a small but significant defect in mating partner discrimination. 相似文献
19.
The G protein beta subunit is essential for multiple responses to chemoattractants in Dictyostelium 总被引:4,自引:2,他引:4 下载免费PDF全文
《The Journal of cell biology》1995,129(6):1667-1675
Increasing evidence suggests that the beta gamma-subunit dimers of heterotrimeric G proteins play a pivotal role in transducing extracellular signals. The recent construction of G beta null mutants (g beta-) in Dictyostelium provides a unique opportunity to study the role of beta gamma dimers in signaling processes mediated by chemoattractant receptors. We have shown previously that g beta- cells fail to aggregate; in this study, we report the detailed characterization of these cells. The g beta- cells display normal motility but do not move towards chemattractants. The typical GTP- regulated high affinity chemoattractant-binding sites are lost in g beta- cells and membranes. The g beta- cells do not display chemoattractant-stimulated adenylyl cyclase or guanylyl cyclase activity. These results show that in vivo G beta links chemoattractant receptors to effectors and is therefore essential in many chemoattractant-mediated processes. In addition, we find that G beta is required for GTP gamma S stimulation of adenylyl cyclase activity, suggesting that the beta gamma-dimer activates the enzyme directly. Interestingly, the g beta- cells grow at the same rate as wild-type cells in axenic medium but grow more slowly on bacterial lawns and, therefore, may be defective in phagocytosis. 相似文献