首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diverse taxa of animals exhibit remarkable aerial capacities, including jumping, mid-air righting, parachuting, gliding, landing, controlled maneuvers, and flapping flight. The origin of flapping wings in hexapods and in 3 separate lineages of vertebrates (pterosaurs, bats, and birds) greatly facilitated subsequent diversification of lineages, but both the paleobiological context and the possible selective pressures for the evolution of wings remain contentious. Larvae of various arboreal hemimetabolous insects, as well as many adult canopy ants, demonstrate the capacity for directed aerial descent in the absence of wings. Aerial control in the ancestrally wingless archaeognathans suggests that flight behavior preceded the origins of wings in hexapods. In evolutionary terms, the use of winglets and partial wings to effect aerial righting and maneuvers could select for enhanced appendicular motions, and ultimately lead to powered flight. Flight behaviors that involve neither flapping nor wings are likely to be much more widespread than is currently recognized. Further characterization of the sensory and biomechanical mechanisms used by these aerially capable taxa can potentially assist in reconstruction of ancestral winged morphologies and facilitate our understanding of the origins of flight.  相似文献   

2.
Although, in some insect taxa, wing shape is remarkably invariant, the wings of Anisopteran dragonflies show considerable variation among genera. Because wing shape largely determines the high energetic costs of flight, it may be expected that interspecific differences are partly due to selection. In the present study, we examined the roles of long-distance migration and high-manoeuvrability mate guarding in shaping dragonfly wings, using a phylogeny-based comparative method, and geometric morphometrics to quantify wing shape. The results obtained show that migration affects the shape of both front and hind wings, and suggest that mate guarding behaviour may also have an effect, especially on the front wing. These effects on front wing shape are at least partly independent. Our findings are interesting when compared with the geographically widespread and ecologically diverse dipterans Acalyptratae (including the genus Drosophila ). The wings in that group are similar in function and structure, but show strikingly low levels of interspecific variation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 362–372.  相似文献   

3.
Although the asymmetry in the upward and downward bending of insect wings is well known, the structural origin of this asymmetry is not yet clearly understood. Some researchers have suggested that based on experimental results, the bending asymmetry of insect wings appears to be a consequence of the camber inherent in the wings. Although an experimental approach can reveal this phenomenon, another method is required to reveal the underlying theory behind the experimental results. The finite element method (FEM) is a powerful tool for evaluating experimental measurements and is useful for studying the bending asymmetry of insect wings. Therefore, in this study, the asymmetric bending of the Allomyrina dichotoma beetle''s hind wing was investigated through FEM analyses rather than through an experimental approach. The results demonstrated that both the stressed stiffening of the membrane and the camber of the wing affect the bending asymmetry of insect wings. In particular, the chordwise camber increased the rigidity of the wing when a load was applied to the ventral side, while the spanwise camber increased the rigidity of the wing when a load was applied to the dorsal side. These results provide an appropriate explanation of the mechanical behavior of cambered insect wings, including the bending asymmetry behavior, and suggest an appropriate approach for analyzing the structural behavior of insect wings.  相似文献   

4.
The Drosophila wing has been used as a model in studies of morphogenesis and evolution; the use of such models can contribute to our understanding of mechanisms that promote morphological divergence among populations and species. We mapped quantitative trait loci (QTL) affecting wing size and shape traits using highly inbred introgression lines between D. simulans and D. sechellia, two sibling species of the melanogaster subgroup. Eighteen QTL peaks that are associated with 12 wing traits were identified, including two principal components. The wings of D. simulans and D. sechellia significantly diverged in size; two of the QTL peaks could account for part of this interspecific divergence. Both of these putative QTLs were mapped at the same cytological regions as other QTLs for intraspecific wing size variation identified in D. melanogaster studies. In these regions, one or more loci could account for intra- and interspecific variation in the size of Drosophila wings. Three other QTL peaks were related to a pattern of interspecific variation in wing size and shape traits that is summarized by one principal component. In addition, we observed that female wings are significantly larger and longer than male wings and the second, fourth and fifth longitudinal veins are closer together at the distal wing area. This pattern was summarized by another principal component, for which one QTL was mapped.  相似文献   

5.
Flight has conferred an extraordinary advantage to some groups of animals. Wing shape is directly related to flight performance and evolves in response to multiple selective pressures. In some species, wings have ornaments such as pigmented patches that are sexually selected. Since organisms with pigmented wings need to display the ornament while flying in an optimal way, we might expect a correlative evolution between the wing ornament and wing shape. We examined males from 36 taxa of calopterygid damselflies that differ in wing pigmentation, which is used in sexual displays. We used geometric morphometrics and phylogenetic comparative approaches to analyse whether wing shape and wing pigmentation show correlated evolution. We found that wing pigmentation is associated with certain wing shapes that probably increase the quality of the signal: wings being broader where the pigmentation is located. Our results also showed correlated evolution between wing pigmentation and wing shape in hind wings, but not in front wings, probably because hind wings are more involved in signalling than front wings. The results imply that the evolution of diversity in wing pigmentations and behavioural sexual displays might be an important driver of speciation due to important pre-copulatory selective pressures.  相似文献   

6.
We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.  相似文献   

7.
A detailed account of the structure of the axillary sclerites of the fore and the hind wings is given. In the fore wing the first axillary is less developed than the second. In the hind wing the second axillary is less developed than the first. The inverse relative development of the first and the second axillary sclerites in the fore and the hind wings has arisen in response to the different type of role they have to play in the two wings. The structure of axillaries reveals that their modifications are intimately associated with the efficient mechanism of flexion and extension of the wings.  相似文献   

8.
The gain of foldable wings is regarded as one of the key innovations enabling the present-day diversity of neopteran insects. Wing folding allows compact housing of the wings and shields the insect body from damage. Wing-fixing systems have evolved in some insects, probably to increase the durability of the shielding function by the wings. Bark lice (Psocodea) are known to possess a unique wing-to-wing repose coupling system, but a detailed morphological and evolutionary study of this system is lacking. In this study, we examined this repose coupling structure by SEM in 32 species including representatives of all three suborders of bark lice (Trogiomorpha, Troctomorpha and Psocomorpha). We concluded that the repose wing-coupling apparatus independently evolved twice within Psocodea. In Trogiomorpha, the apparatus is located on the subcostal vein of the forewing and is composed of elongated rib-like structures. In Troctomorpha and Psocomorpha, in contrast, the repose coupling structure is located on the radius vein of the forewing and is formed by a swollen vein. These morphological and developmental differences in the repose coupling structures also provide phylogenetic information at different systematic levels.  相似文献   

9.
Ewa Simon 《ZooKeys》2013,(319):269-281
The fore wings of scale insect males possess reduced venation compared with other insects and the homologies of remaining veins are controversial. The hind wings are reduced to hamulohalterae. When adult males are prepared using the standard methods adopted to females and nymphs, i.e. using KOH to clear the specimens, the wings become damaged or deformed, an so these structures are not usually described or illustrated in publications. The present study used dry males belonging to seven species of the family Coccidae to check the presence of stable, structural colour patterns of the wings. The visibility of the wing interference patterns (WIP), discovered in Hymenoptera and Diptera species, is affected by the way the insects display their wings against various backgrounds with different light properties. This frequently occurring taxonomically specific pattern is caused by uneven membrane thickness and hair placement, and also is stabilized and reinforced by microstructures of the wing, such as membrane corrugations and the shape of cells. The semitransparent scale insect’s fore wings possess WIPs and they are taxonomically specific. It is very possible that WIPs will be an additional and helpful trait for the identification of species, which in case of males specimens is quite difficult, because recent coccidology is based almost entirely on the morphology of adult females.  相似文献   

10.
Hypotheses are presented concerning why mayflies moult after functional wings develop and why most insects cease to moult at this time. The pattern of retention or loss of the subimaginal moult in extant mayflies suggests that this moult may be necessary to complete elongation of caudal filaments and forelegs of adults. It is then analogous to the pupal moult of holometabolous insects. I propose that selection for wing efficiency has normally confined the presence of functional wings to one instar only, which is also the last and reproductive stage. Selection for light wings has generally caused the epidermis of membranous insect wings to degenerate, thereby precluding otherwise advantageous adult moults.  相似文献   

11.
Effects of Dragonfly Wing Structure on the Dynamic Performances   总被引:2,自引:0,他引:2  
The configurations of dragonfly wings, including the corrugations of the chordwise cross-section, the microstructure of the longitudinal veins and membrane, were comprehensively investigated using the Environmental Scanning Electron Microscopy (ESEM). Based on the experimental results reported previously, the multi-scale and multi-dimensional models with different structural features of dragonfly wing were created, and the biological dynamic behaviors of wing models were discussed through the Finite Element Method (FEM). The results demonstrate that the effects of different structural features on dynamic behaviors of dragonfly wing such as natural frequency/modal, bending/torsional deformation, reaction force/torque are very significant. The corrugations of dragonfly wing along the chordwise can observably improve the flapping frequency because of the greater structural stiffness of wings. In updated model, the novel sandwich microstructure of the longitudinal veins remarkably improves the torsional deformation of dragonfly wing while it has a little effect on the flapping frequency and bending deformation. These integrated structural features can adjust the deformation of wing oneself, therefore the flow field around the wings can be controlled adaptively. The fact is that the flights of dragonfly wing with sandwich microstructure of longitudinal veins are more efficient and intelligent.  相似文献   

12.
We studied the relationship between wing stiffness and butterfly ecology and phylogeny. Nine species belonging to the tribe Theclini of the family Lycaenidae were selected and examined for the wing stiffness of dried specimens by a three‐point bending test. It was found in Japonica lutea that the wing stiffness was not affected by the humidity to which it had been exposed, but was strongly affected by wing size and sex. Comparisons of sexual differences in four species indicated that females of patrolling species had stiffer wings than conspecific males, but that males of territorial species had stiffer wings than conspecific females. Finally, the wing stiffness was compared among males of nine species that use different mate‐locating tactics, and the results revealed a tendency that males of territorial species have stiffer wings than males of patrolling species. These results, though including a few exceptional cases, are discussed from the perspective of ecological requirements and phylogenetic constraints on the species.  相似文献   

13.
Effect of slotted wing tips on yawing moment characteristics   总被引:1,自引:0,他引:1  
The aerodynamic yawing moment characteristics of bird wings with slotted tips are dealt with. Emphasis is placed on the effect of sweep which the separated feathers constituting the wing tips show and which can reach significant values. Reference is made to basic aerodynamic characteristics of wings with sweep which yields a stabilizing yawing moment significantly larger than that of unswept wings. Then, the yawing moment characteristics are determined for a wing, the features of which are considered as representative of bird wings with sweep in their slotted tips. A sophisticated aerodynamic procedure is used for obtaining results of high precision. It is shown that the sweep in the slotted wing tips yields a stabilizing yawing moment of significant magnitude, considerably increasing with the lift coefficient. To make the significance of wing tip sweep for the ability to generate yawing moments more perspicuous, a wing modification the slotted tips of which are unswept is considered for comparison. It turns out that this wing shows yawing moments which are substantially smaller. A physical insight into the effect of slotted wing tip sweep on the aerodynamic yawing moment characteristics is provided by showing the underlying mechanism. From the results presented in this paper it follows that the sweep in slotted wing tips provides a substantial contribution to the aerodynamic yawing moment and, thus, to yaw stability. It may be concluded that this is an essential reason why there is sweep in the slotted tips of bird wings.  相似文献   

14.
Knives, birds' wings, and mountain slopes are used for certain purposes: cutting, flying, and climbing. A bird's wings have in common with knives that they have been 'designed' for the purpose they serve, which purpose accounts for their existence, whereas mountain slopes have come about by geological processes independently of their uses for climbing. A bird's wings differ from a knife in that they have not been designed or produced by any conscious agent; rather, the wings, like the slopes, are outcomes of natural processes without any intentional causation. Evolutionary biologists use teleological language and teleological explanations. I propose that this use is appropriate, because teleological explanations are hypotheses that can be subject to empirical testing. The distinctiveness of teleological hypotheses is that they account for the existence of a feature in terms of the function it serves; for example, wings have evolved and persist because flying is beneficial to birds by increasing their chances of surviving and reproducing. Features of organisms that are explained with teleological hypotheses include structures, such as wings; processes, such as development from egg to adult; and behaviours, such as nest building. A proximate explanation of these features is the function they serve; an ultimate explanation that they all share is their contribution to the reproductive fitness of the organisms. I distinguish several kinds of teleological explanations, such as natural and artificial, as well as bounded and unbounded, some of which but not others apply to biological explanations.  相似文献   

15.
The aerodynamic yawing moments due to sideslip are considered for wings of birds. Reference is made to the experience with aircraft wings in order to identify features which are significant for the yawing moment characteristics. Thus, it can be shown that wing sweep, aspect ratio and lift coefficient have a great impact. Focus of the paper is on wing sweep which can considerably increase the yawing moment due to sideslip when compared with unswept wings. There are many birds the wings of which employ sweep. To show the effect of sweep for birds, the aerodynamic characteristics of a gull wing which is considered as a representative example are treated in detail. For this purpose, a sophisticated aerodynamic method is used to compute results of high precision. The yawing moments of the gull wing with respect to the sideslip angle and the lift coefficient are determined. They show a significant level of yaw stability which strongly increases with the lift coefficient. It is particularly high in the lift coefficient region of best gliding flight conditions. In order to make the effect of sweep more perspicuous, a modification of the gull wing employing no sweep is considered for comparison. It turns out that the unswept wing yields yawing moments which are substantially smaller than those of the original gull wing with sweep. Another feature significant for the yawing moment characteristics concerns the fact that sweep is at the outer part of bird wings. By considering the underlying physical mechanism, it is shown that this feature is most important for the efficiency of wing sweep. To sum up, wing sweep provides a primary contribution to the yawing moments. It may be concluded that this is an essential reason why there is sweep in bird wings.  相似文献   

16.
Neuromuscular and endocrine control of an avian courtship behavior   总被引:1,自引:0,他引:1  
In many species of birds, males perform complex visual and acoustic courtship displays to attract and stimulate females. Some of these displays involve considerable use of the wings and legs, suggesting that they may be controlled by sexually dimorphic spinal motoneurons and their target muscles. Sex steroid hormones are known to organize and activate many sexually dimorphic phenotypes, so these neuromuscular systems may also be steroid sensitive. To test these ideas, we have begun studies of wild golden-collared manakins (Manacus vitellinus) in Central America. Males of this species establish a courtship arena in the forest, where they perform an elaborate dance that includes use of their wings to generate loud snapping sounds. Here we describe male golden-collared manakin courtship behavior, including the various "wingsnaps." We also review our studies, and those of others, showing sexually dimorphic properties of manakin wings, the wing musculature, and sex steroid accumulation in the spinal cord. These data suggest that manakins are useful models for evaluating steroid control of complex peripheral neuromuscular systems.  相似文献   

17.
In order to study omithopter flight and to improve a dynamic model of flapping propulsion,a series of tests are conducted on a flapping-wing blimp.The blimp is designed and constructed from mylar plastic and balsa wood as a test platform for aerodynamics and flight dynamics.The blimp,2.3 meters long and 420 gram mass,is propelled by its flapping wings.Due to buoyancy the wings have no lift requirement so that the distinction between lift and propulsion can be analyzed in a flight platform at low flight speeds.The blimp is tested using a Vicon motion tracking system and various initial conditions are tested including accelerating flight from standstill,decelerating from an initial speed higher than its steady state,and from its steady-state speed but disturbed in pitch angle.Test results are used to estimate parameters in a coupled quasi-steady aerodynamics/Newtonian flight dynamics model.This model is then analyzed using Floquet theory to determine local dynamic modes and stability.It is concluded that the dynamic model adequately describes the vehicle's nonlinear behavior near the steady-state velocity and that the vehicle's linearized modes are akin to those of a fixed-wing aircraft.  相似文献   

18.
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.  相似文献   

19.
We examine several aerodynamic and thermoregulatory hypotheses about possible adaptive factors in the evolution of wings from small winglets in insects. Using physical models of Paleozoic insects in a wind tunnel, we explore the potential effects of wings for increasing gliding distance, increasing dispersal distance during parachuting, improving attitude control or stability, and elevating body temperatures during thermoregulation. The effects of body size and shape, wing length, number, and venation, and meteorological conditions are considered. Hypotheses consistent with both fixed and moveable wing articulations are examined. Short wings have no significant effects on any of the aerodynamic characteristics, relative to wingless models, while large wings do have significant effects. In contrast, short wings have large thermoregulatory effects relative to wingless models, but further increases in wing length do not significantly affect thermoregulatory performance. At any body size, there is a wing length below which there are significant thermoregulatory effects of increasing wing length, and above which there are significant aerodynamic effects of increasing wing length. The relative wing length at which this transition occurs decreases with increasing body size. These results suggest that there could be no effective selection for increasing wing length in wingless or short-winged insects in relation to increased aerodynamic capacity. Our results are consistent with the hypothesis that insect wings initially served a thermoregulatory function and were used for aerodynamic functions only at larger wing lengths and/or body sizes. Thus, we propose that thermoregulation was the primary adaptive factor in the early evolution of wings that preadapted them for the subsequent evolution of flight. Our results illustrate an evolutionary mechanism in which a purely isometric change in body size may produce a qualitative change in the function of a given structure. We propose a hypothesis in which the transition from thermoregulatory to aerodynamic function for wings involved only isometric changes in body size and argue that changes in body form were not a prerequisite for this major evolutionary change in function.  相似文献   

20.
Insect wings consist almost entirely of lifeless cuticle; yet their veins host a complex multimodal sensory apparatus and other tissues that require a continuous supply of water, nutrients and oxygen. This review provides a survey of the various living components in insect wings, as well as the specific contribution of the circulatory and tracheal systems to provide all essential substances. In most insects, hemolymph circulates through the veinal network in a loop flow caused by the contraction of accessory pulsatile organs in the thorax. In other insects, hemolymph oscillates into and out of the wings due to the complex interaction of several factors, such as heartbeat reversal, intermittent pumping of the accessory pulsatile organs in the thorax, and the elasticity of the wall of a special type of tracheae. A practically unexplored subject is the need for continuous hydration of the wing cuticle to retain its flexibility and toughness, including the associated problem of water loss due to evaporation. Also, widely neglected is the influence of the hemolymph mass and the circulating flow in the veins on the aerodynamic properties of insect wings during flight. Ventilation of the extraordinarily long wing tracheae is probably accomplished by intricate interactions with the circulatory system, and by the exchange of oxygen via cutaneous respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号