首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis, or programmed cell death, is an essential process for the elimination of unnecessary cells during embryonic development, tissue homeostasis, and certain pathological conditions. Recently, an active mechanical function of apoptosis called apoptotic force has been demonstrated during a tissue fusion process of Drosophila embryogenesis. The mechanical force produced during apoptosis is used not only to force dying cells out from tissues in order to keep tissue integrity, but also to change the morphology of neighboring cells to fill the space originally occupied by the dying cell. Furthermore, the occurrence of apoptosis correlates with tissue movement and tension of the tissue. This finding suggests that apoptotic forces might be harnessed throughout cell death-related morphogenesis; however, this concept remains to be fully investigated. While the investigation of this active mechanical function of apoptosis has just begun, here we summarize the current understandings of this novel function of apoptosis, and discuss some possible developmental processes in which apoptosis may play a mechanical role. The concept of apoptotic force prompts a necessity to rethink the role of programmed cell death during morphogenesis.  相似文献   

2.

Background

The aim of the study is to examine the effect of limited and prolonged hyperoxia on neonatal rat lung. This is done by examining the morphologic changes of apoptosis, the expression of ceramide, an important mediator of apoptosis, the expression of inflammatory mediators represented by IL-1β and the expression of 2 proto-oncogenes that appear to modulate apoptosis (Bax and Bcl-2).

Methods

Newborn rats were placed in chambers containing room air or oxygen above 90% for 7 days. The rats were sacrificed at 3, 7 or 14 days and their lungs removed. Sections were fixed, subjected to TUNEL, Hoechst, and E-Cadherin Staining. Sections were also incubated with anti-Bcl-2 and anti-Bax antisera. Bcl-2 and Bax were quantitated by immunohistochemistry. Lipids were extracted, and ceramide measured through a modified diacylglycerol kinase assay. RT-PCR was utilized to assess IL-1β expression.

Results

TUNEL staining showed significant apoptosis in the hyperoxia-exposed lungs at 3 days only. Co-staining of the apoptotic cells with Hoechst, and E-Cadherin indicated that apoptotic cells were mainly epithelial cells. The expression of Bax and ceramide was significantly higher in the hyperoxia-exposed lungs at 3 and 14 days of age, but not at 7 days. Bcl-2 was significantly elevated in the hyperoxia-exposed lungs at 3 and 14 days. IL-1β expression was significantly increased at 14 days.

Conclusion

Exposure of neonatal rat lung to hyperoxia results in early apoptosis documented by TUNEL assay. The early rise in Bax and ceramide appears to overcome the anti-apoptotic activity of Bcl-2. Further exposure did not result in late apoptotic changes. This suggests that apoptotic response to hyperoxia is time sensitive. Prolonged hyperoxia results in acute lung injury and the shifting balance of ceramide, Bax and Bcl-2 may be related to the evolution of the inflammatory process.  相似文献   

3.
The brain is one of the first organs affected during sepsis development resulting in apoptosis for a short-term and cognitive impairment for a long-term. Despite its importance, the mechanisms of brain dysfunction during sepsis are not fully elucidated. Thus, we here, in an animal model of sepsis, evaluated apoptosis in the dentate gyrus cell layer of the hippocampus to document the involvement of caspase-3 in the pathogenesis of neuronal apoptosis. Wistar rats sham-operated or submitted to the cecal ligation and perforation (CLP) procedure were killed at 12, 24, 48 h, and 10 days after surgery for the determination of caspase-3 and apoptosis rate. In a separate cohort of animals, a caspase-3-specific inhibitor was administered and animals were killed at 12 h after sepsis. An increase in the number of apoptotic cells 12, 24, and 48 h by histopathological evaluations and an increase of caspase-3 apoptotic cells 12 and 24 h after sepsis induction were observed. The caspase-3 inhibitor decreases the number of apoptotic cells by histopathological evaluations but not by immunohistochemistry evaluations. Caspase-3 is involved in part in apoptosis in the dentate gyrus cell layer of the hippocampus in septic rats submitted by CLP.  相似文献   

4.
The proliferation, differentiation, and migration of keratinocytes are essential in the early stages of wound healing. Hypoxia-Reoxygenation (H/R) injury to keratinocytes can occur in various stressful environments such as surgery, trauma, and various forms of ulcers. The effects of remifentanil on human keratinocytes under hypoxia-reoxygenation have not been fully studied. Therefore, we investigated the effects of remifentanil on the proliferation, apoptosis, and autophagic activation of human keratinocytes during hypoxic-reoxygenation. Human keratinocytes were cultured under 1% oxygen tension for 24 h. The cells were then treated with various concentrations of remifentanil (0.01, 0.1, 0.5, and 1 ng/mL) for 2 h. Thereafter, the cells were reoxygenated for 12 h at 37°C. We measured cell viability via MTT assay. Using quantitative real-time PCR and western blot analysis, we measured the expression levels of proteins associated with apoptosis and autophagy. Quantification of apoptotic cells was performed using flow cytometer analysis and autophagic vacuoles were observed under a fluorescence microscope. Remifentanil treatment brought about an increase in the proliferation of human keratinocytes damaged by hypoxia-reoxygenation and decreased the apoptotic cell death, enhancing autophagic activity. However, the autophagy pathway inhibitor 3-MA inhibited the protective effect of remifentanil in hypoxia-reoxygenation injury. In conclusion, the current study demonstrated that remifentanil treatment stimulated autophagy and reduced apoptotic cell death in a hypoxia-reoxygenation model of human keratinocytes. Our results provide additional insights into the relationship between apoptosis and autophagy.  相似文献   

5.
Variations in the number of radiation-induced morphologically dead or dying cells (apoptotic cells) in the crypts in the small intestine of the mouse have been studied throughout a 24-h period under a normal light regimen (light on, 07.00-19.00 h; light off, 19.00-07.00 h). A clear circadian rhythm was displayed in the apoptotic incidence 3 or 6 h after irradiation for each gamma-ray dose studied (range 0.14-9.0 Gy). The most prominent circadian rhythm was obtained after 0.5 Gy. The peak time of day for inducing apoptosis was 06.00-09.00 h, and the trough occurred at 18.00-21.00 h. Some mice were also transferred to a room with the light cycle reversed, and were irradiated on different days after the transfer. The apoptosis induced by 0.5 Gy or 9.0 Gy, or the number of surviving crypts (microcolonies) after 11.0 Gy or 13.0 Gy was examined. The transition point for reversal (i.e. the switch time from the normal-light pattern to the reversed-light pattern) of the circadian rhythm in apoptosis (after 0.5 Gy) occurred 7 days after the transfer and the rhythm was reversed by 14 days. The rhythm for crypt survival (i.e. for clonogenic cell radiosensitivity) was disturbed on 1 day and the transition point for reversal occurred 3 days after the transfer. The rhythm became reversed by 7 days. These observations are discussed in relation to the identity of clonogenic cells, (functional) stem cells, proliferating transit cells and the cells sensitive to small doses of radiation (i.e. hypersensitive cells) in the crypt.  相似文献   

6.
Identification of apoptotic cell death in distraction osteogenesis   总被引:2,自引:0,他引:2  
The purpose of this experimental work was to investigate whether apoptosis contributes to tissue remodelling during distraction bone healing. In a rabbit model of mandibular distraction osteogenesis, we quantitatively analysed the extent of apoptotic cell death in relation to differently applied mechanical loadings. Apoptotic cells were identified by means of an in situ detection assay for nuclear DNA fragmentation using a modified TUNEL procedure and by electron microscopical examination for typical morphological features of programmed cell death. TUNEL-positive cells were frequently detected in samples distracted at higher strain magnitudes. Ultrastructurally, these apoptotic cells displayed a condensed chromatin and fragmented nuclei, while the continuity of their plasma membranes remained intact. Our results clearly indicated that the discontinuous traction of osteotomized mandibles induced enhanced apoptosis. In contrast to non-distracted samples and mandibles distracted at low strain magnitudes, in which only minimal evidence of apoptotic cell death was detected, the application of hyperphysiological strain magnitudes resulted in an increased apoptosis rate. Thus, mechanical loading seems to be a triggering factor for apoptotic changes in osteoblastic cells. These findings suggest a pathophysiological role of apoptotic cell death in the control of tissue integrity during distraction osteogenesis.  相似文献   

7.
It has been shown previously using in vivo and ex vivo animal models, that cyclical mechanical stimulation is capable of maintaining osteocyte viability through the control of apoptotic cell death. Here we have studied the effect of mechanical stimulation on osteocyte viability in human trabecular bone maintained in a 3-D bioreactor system. Bone samples, maintained in the bioreactor system for periods of 3, 7 and 27 days, were subjected to either cyclical mechanical stimulation which engendered a maximum of 3,000 microstrain in a waveform corresponding to physiological jumping exercise for 5 minutes daily or control unloading. Unloading resulted in a decrease in osteocyte viability within 3 days that was accompanied by increased levels of cellular apoptosis. Mechanical stimulation significantly reduced apoptosis (p< or =0.032) and improved the maintenance of osteocyte viability in bone from all patient samples. The percentage Alkaline Phosphatase (ALP) labelled bone surface was significantly increased (p< or =0.05) in response to mechanical stimulation in all samples as was the Bone Formation Rate (BFR/BS) (p=0.005) as determined by calcein label incorporation in the 27-day experiment. These data indicate that in this model system, mechanical stimulation is capable of maintaining osteocyte viability in human bone.  相似文献   

8.
9.
Apoptosis, or genetically programmed cell death, is a crucial cellular process that maintains the balance between life and death in cells. The precise molecular mechanism of apoptosis signaling and the manner in which type 1 and type 2 pathways of the apoptosis signaling network are differentially activated under distinct apoptotic stimuli is poorly understood. Based on Monte Carlo stochastic simulations, we show that the type 1 pathway becomes activated under strong apoptotic stimuli, whereas the type 2 mitochondrial pathway dominates apoptotic signaling in response to a weak death signal. Our results also show signaling in the type 2 pathway is stochastic; the population average over many cells does not capture the cell-to-cell fluctuations in the time course (~1–10 h) of downstream caspase-3 activation. On the contrary, the probability distribution of caspase-3 activation for the mitochondrial pathway shows a distinct bimodal behavior that can be used to characterize the stochastic signaling in type 2 apoptosis and other similar complex signaling processes. Interestingly, such stochastic fluctuations in apoptosis signaling occur even in the presence of large numbers of signaling molecules.  相似文献   

10.
Farnesyl protein transferase inhibitors (FTIs) reverse the transformed phenotype of fibroblasts expressing activated H-Ras and block anchorage-independent growth and tumorigenesis of tumor cell lines independent of their Ras mutational status. FTIs induce significant tumor regression accompanied by apoptosis in several transgenic mouse tumor models. FTI treatment of tumor cells in vitro is proapoptotic under certain cell culture conditions. Induction of apoptosis by FTIs in vitro generally requires a second death-promoting signal. To better understand FTI-induced apoptosis we analyzed the effect of SCH 66336, a tricyclic FTI, on apoptosis of Ras-transformed Rat2 fibroblasts. Treatment of H-Ras-CVLS-transformed fibroblasts with MEK1,2 inhibitors provides a pharmacological second signal to enhance FTI-induced apoptosis. Simultaneous treatment of these cells with a MEK1,2 inhibitor markedly enhanced caspase-3 activity and the apoptotic response to SCH 66336. The combination treatment resulted in a more complete and sustained inhibition of MAPK pathway activity than observed with either drug alone. Surprisingly, after treatment with either agent alone or in combination, no apoptotic response was observed in Rat2 cells transformed with a geranylgeranylated form of H-Ras (H-Ras-CVLL). Differences were also observed when SCH 66336 treatment was combined with forced suspension growth or serum withdrawal, in that an increase in drug-induced apoptosis was observed in H-Ras-CVLS-transformed Rat2 cells but not H-Ras-CVLL-transformed Rat2 cells. The lack of apoptotic effect of SCH 66336 and MEK inhibitor, alone or in combination, in H-Ras-CVLL-transformed cells suggests a difference in the reliance of cells transformed with farnesylated and geranylgeranylated forms of H-Ras on the MAPK signal transduction cascade for survival. K-Ras-transformed cells underwent apoptosis upon MEK1,2 inhibition but not in response to SCH 66336 treatment. The apoptotic response induced by MEK1,2 inhibitors is much greater in magnitude in H-Ras-transformed cells than in K-Ras-transformed cells, also pointing to differences in pathway utilization and/or dependence for these two Ras isoforms.  相似文献   

11.
Cytotoxic T cells may induce myocardial apoptosis by histiocyte activation during rejection following allogenic heart transplant. The aim of the present investigation was to evaluate the macrophage response and its relationship to the programmed death of cardiomyocytes in rejection and during cyclosporin-A (CsA) treatment. An abdominal, heterotopic heart transplant rat model was used establishing two groups: singenic (ST) and allogenic (AL) transplant. 5 mg/kg/day (s.c.) CsA (Sandimun) was administered to half of the animals in each group. Morphological and structural analysis was performed 7, 14, 21, 30, 50 and 100 days post-transplant. Macrophages were detected using the monoclonal antibody (ED1). The TUNEL method was used to visualise apoptotic cells. Two weeks after ST in animals without immuno-suppressive treatment, the transplanted myocardium had been extensively infiltrated by inflammatory cells, many of which were ED1-positive. At 21 days follow-up, the number of labelled cells had fallen. In animals treated with CsA the amount of ED1-positive cells was lower than that seen in the anterior group. Only a few isolated cells of the infiltrate were TUNEL-positive. In the AT group, rejection took place between 9-15 days in the untreated animals. The myocardium was highly infiltrated by mononuclear cells. Some were ED1-positive. Small groups of apoptotic cells were visible in the infiltrate and in some vessel lumens. Rejection was resolved in animals treated with CsA. The macrophage response diminished during follow-up in a similar way to that occurring in the ST. Few cells showed TUNEL positivity. It may be concluded that: a) CsA treatment diminishes the amount of infiltrated macrophages; b) animals receiving ST or AT, show a low level of apoptosis; c) in the present model, the apoptosis of cardiomyocytes does not appear to be induced by macrophages; and d) in this model it is not possible to relate apoptosis and rejection.  相似文献   

12.
The present study investigates the effect of low oxygen concentrations on thapsigargin-induced apoptosis and reactive oxygen species (ROS)-related signaling in articular chondrocytes. Chondrocytes were obtained from normal canine knee cartilage and were treated with different concentrations of thapsigargin for 24 h under normoxic (21% oxygen tension) or hypoxic (1% oxygen tension) conditions. The cells treated with thapsigargin under normoxic conditions showed a dose-dependent induction of apoptosis. However, the cellular changes and apoptotic events that occurred following thapsigargin treatment, were completely inhibited by hypoxia, including loss of mitochondrial transmembrane potential (MTP), ROS generation and JNK phosphorylation. Moreover, the cells exposed to hypoxic conditions showed increased expression of the anti-apoptotic proteins xIAP-2 and Bcl-2. We demonstrate that hypoxia inhibited thapsigargin-induced apoptosis in chondrocytes by regulating ROS-related signaling and the expression of anti-apoptotic proteins. We propose that maintaining hypoxic conditions in articular cartilage may be required for the prevention of chondrocyte and cartilage diseases such as arthritis.  相似文献   

13.
Critical illness is associated with muscle wasting and muscle weakness. Using burn injury as a model of local and systemic inflammatory response, we tested the hypothesis that thermal injury causes apoptosis in muscle. After a 40% body surface area burn to rats, abdominal muscles beneath the burn and limb muscles distant from the burn were examined for apoptosis at varying times after burn. Ladder assay, ELISA, and histological methods showed evidence of apoptosis in the abdominal muscles within 4-12 h with peak changes occurring at 3-7 days. Maximal apoptosis was also evident at distant limb muscles at 3-7 days. Investigation of proapoptotic pathways indicated mitochondrial membrane potential to be altered by 1 h after burn. Starting at 15 min after burn, cytochrome c was released from the mitochondria into the cytosol, followed by increased activity of caspase-3, starting at 6 h after burn. These studies suggest that mitochondria and caspase-mediated apoptotic pathways may be an additional mechanism of muscle weight loss in burns and may be potential therapeutic targets for prevention of muscle wasting.  相似文献   

14.
目的:探讨自噬在周期性张应力介导的成肌细胞凋亡中的作用,以明确应力诱导内质网应激引起自噬与凋亡之间的关系。方法:在成功构建L6大鼠体外培养--力学刺激模型的基础上,采用Western Blot法分析周期性张应力对自噬相关蛋白LC3蛋白表达的影响,并通过Annexin V-FITC/PI流式细胞术检测细胞凋亡情况。加力组分别给予1,6,12,24 h的力学刺激(拉伸变形率为15%,频率为10循环/min),3-MA组和Rapamycin组在加力2 h前分别加入自噬抑制剂3-甲基腺嘌呤和自噬激活剂雷帕霉素并且加力24 h,0 h组与实验组在同时种板但是不给予力刺激。采用SPSS17.0统计软件对以上数据进行统计分析。结果:成肌细胞中的LC3II/LC3I值随加力时间延长呈上升趋势,24 h达最高(P0.05);抑制组的细胞凋亡率(18.75±1.06%)相对于0 h组(0.726±0.13%)和加力24 h组(14.84±1.14%)的明显升高(P0.05);Rapamycin组相对于加力24 h组的细胞凋亡率明显下降(8.88±1.08%vs 14.84±1.14%),但是细胞凋亡率仍然高于0 h组的(8.88±1.08%vs 0.726±0.13%)。结论:在一定时间范围内,周期性张应力可诱导成肌细胞发生自噬,并且自噬活性与作用时间成正比;自噬可以降低应力介导的成肌细胞凋亡的活性。  相似文献   

15.
Morphogenesis in multicellular organisms is accompanied by apoptotic cell behaviors: cell shrinkage and cell disappearance. The mechanical effects of these behaviors are spatiotemporally regulated within multicellular dynamics to achieve proper tissue sizes and shapes in three-dimensional (3D) space. To analyze 3D multicellular dynamics, 3D vertex models have been suggested, in which a reversible network reconnection (RNR) model has successfully expressed 3D cell rearrangements during large deformations. To analyze the effects of apoptotic cell behaviors on 3D multicellular morphogenesis, we modeled cell apoptosis based on the RNR model framework. Cell shrinkage was modeled by the potential energy as a function of individual cell times during the apoptotic phase. Cell disappearance was modeled by merging neighboring polyhedrons at their boundary surface according to the topological rules of the RNR model. To establish that the apoptotic cell behaviors could be expressed as modeled, we simulated morphogenesis driven by cell apoptosis in two types of tissue topology: 3D monolayer cell sheet and 3D compacted cell aggregate. In both types of tissue topology, the numerical simulations successfully illustrated that cell aggregates gradually shrank because of successive cell apoptosis. During tissue shrinkage, the number of cells in aggregates decreased while maintaining individual cell size and shape. Moreover, in case of localizing apoptotic cells within a part of the 3D monolayer cell aggregate, the cell apoptosis caused the global tissue bending by pulling on surrounding cells. In case of localizing apoptotic cells on the surface of the 3D compacted cell aggregate, the cell apoptosis caused successive, directional cell rearrangements from the inside to the surface. Thus, the proposed model successfully provided a basis for expressing apoptotic cell behaviors during 3D multicellular morphogenesis based on an RNR model framework.  相似文献   

16.
Apoptosis is a form of cell death that can function to eliminate cells damaged by environmental stress. One stress that can compromise embryonic development is elevated temperature (i.e., heat shock). For the current studies, we hypothesized that heat shock induces apoptosis in bovine embryos in a developmentally regulated manner. Studies were performed to 1) determine whether heat shock can induce apoptosis in preimplantation embryos, 2) test whether heat-induced apoptosis is developmentally regulated, 3) evaluate whether heat shock-induced changes in caspase activity parallel patterns of apoptosis, and 4) ascertain whether exposure to a mild heat shock can protect embryos from heat-induced apoptosis. As determined by TUNEL reaction, exposure of bovine embryos > or =16 cells on Day 5 after insemination to 41 or 42 degrees C for 9 h increased the percentage of cells undergoing apoptosis. In addition, there was a duration-dependent increase in the proportion of blastomeres that were apoptotic when embryos were exposed to temperatures of 40 or 41 degrees C, which are more characteristic of temperatures experienced by heat-stressed cows. Heat shock also increased caspase activity in Day 5 embryos. However, heat shock did not induce apoptosis in 2- or 4-cell embryos, nor did it increase caspase activity in 2-cell embryos. The apoptotic response of 8- to 16-cell-stage bovine embryos to heat shock depended upon the day after insemination that heat shock occurred. When 8- to 16-cell embryos were collected on Day 3 after insemination, heat shock of 41 degrees C for 9 h did not induce apoptosis. In contrast, when 8- to 16-cell embryos were collected on Day 4 after insemination and exposed to heat shock, there was an increase in the percentage of cells undergoing apoptosis. Exposure of 8- to 16-cell embryos at Day 4 to a mild heat shock of 40 degrees C for 80 min blocked the apoptotic response to a subsequent, more-severe heat shock of 41 degrees C for 9 h. In conclusion, apoptosis is a developmentally acquired phenomenon that occurs in embryos exposed to elevated temperature, and it can be prevented by induced thermotolerance.  相似文献   

17.
Mechanical stress-induced apoptosis in the cardiovascular system   总被引:5,自引:0,他引:5  
All tissues in the body are subjected to physical forces originating either from tension, created by cells themselves, or from the environment. Particularly, the cardiovascular system is continuously subjected to haemodynamic forces created by blood flow and blood pressure. While biomechanical force at physiological levels is essential to develop and maintain organic structure and function, elevated mechanical stress may result in cell death leading to pathological conditions. In recent years, however, it has been widely recognized that cell death, namely apoptosis, is not just the response to an injury but a highly regulated and controlled process. Therefore, physical stimuli must be sensed by cells and transmitted through intracellular signal transduction pathways to the nucleus, resulting in cell apoptosis. Disturbances in the regulatory mechanisms of apoptosis often precede the development of a disease. Exploration of the molecular signalling mechanisms leading to mechanical stress-induced apoptosis in cardiovascular disorders revealed the crucial role of apoptosis in the pathogenesis of these diseases. For instance, heart failure, hypertension and atherosclerosis are believed to be related to sustained mechanical overloading or stress. In this review we summarize the recent data focusing on molecular mechanisms of mechanical stress-induced apoptosis and highlight the role of apoptosis in the development of cardiovascular disorders, which may lead to new therapeutic strategies for these diseases.  相似文献   

18.
In these experiments, we investigated the role of calcium as a second messenger in the apoptotic activation of cytosolic phospholipase A(2) (cPLA(2)). As our model, we used a murine fibroblast cell line (C3HA) that was induced to undergo apoptosis by a combination of TNF and cycloheximide. Using fura 2 Ca(2+) imaging, we found strong evidence for an intracellular calcium response after 1 h of treatment, which correlated with the onset of phosphatidylserine externalization, but preceded effector procaspase processing by several hours. The response was strongest in the perinuclear region, where mean levels rose 83% (144 +/- 14 nM in untreated cells vs 264 +/- 39 nM in treated), while cells displaying morphological evidence of apoptosis had the highest levels of calcium (250-1000 nM). Verapamil blocked this response, indicating an extracellular source for the calcium. Fluorescence microscopy revealed a pattern of nuclear translocation of cPLA(2) during apoptosis, which was also blocked by verapamil, indicating an important role for calcium in this process. In addition, we found that verapamil prevented the release of [(3)H]arachidonic acid from C3HA cells induced to undergo apoptosis by the chemotherapeutic agents vinblastine, melphalan, and cis-platinum. Together, these data suggest that calcium is important for cPLA(2) activation by diverse apoptotic stimuli.  相似文献   

19.
Human leukemia/lymphoma cells maintained in culture medium without provision of fresh nutrients lose viability and die by a process resembling apoptosis within a few days. Upon incubation in an FCS-supplemented RPMI 1640 medium containing 2 mM L-glutamine CEM, Namalwa, HL-60 and U937 cells, seeded at initial densities of 0.2 to 1 × 106 cells/ml, ceased growing within 3–5 days and progressively entered an apoptotic pathway, as assessed by nucleosomal DNA fragmentation and morphology. Both the major energy-source nutrients in the medium, glucose and glutamine, became rapidly exhausted during the incubation. Further studies were performed using CEM cells. Incubation in glutamine-free or glucose-free medium renewed every 24 h showed that glutamine deprivation is associated with cell death by apoptosis independent of energetic failure, whereas glucose deprivation is followed by rapid loss of mitochondrial function with sharp drop of intracellular ATP and cell death by necrosis. A 12–24 h incubation in glutamine-depleted medium was required to direct the cells toward the apoptotic pathway. Growth arrest followed by apoptotic death was detected in CEM cells when medium glutamine concentration remained below 0.3–0.4 mM for at least 24 h, but a reinstatement of medium glutamine to 2 mM within this period rescued the cells from growth arrest and death. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Ionizing radiation and mitotic inhibitors are used for the treatment of lymphoma. We have studied cell cycle arrest and apoptosis of three human B-lymphocyte cell lines after X irradiation and/or nocodazole treatment. Radiation (4 and 6 Gy) caused arrest in the G(2) phase of the cell cycle as well as in G(1) in Reh cells with an intact TP53 response. Reh cells, but not U698 and Daudi cells with defects in the TP53 pathway, died by apoptosis after exposure to 4 or 6 Gy radiation (>15% apoptotic Reh cells and <5% apoptotic U698/Daudi cells 24 h postirradiation). Lower doses of radiation (0.5 and 1 Gy) caused a transient delay in the G(2) phase of the cell cycle for the three cell lines but did not induce apoptosis (<5% apoptotic cells at 24 h postirradiation). Cells of all three cell lines died by apoptosis after exposure to 1 microg/ml nocodazole, a mitotic blocker that acts by inhibiting the polymerization of tubulin (>25% apoptotic cells after 24 h). When X irradiation with 4 or 6 Gy was performed at the time of addition of nocodazole to U698 and Daudi cells, X rays protected against the apoptosis-inducing effects of the microtubule inhibitor (<5% and 15% apoptotic cells, respectively, 24 h incubation). U698 and Daudi cells apparently have some error(s) in the signaling pathway inducing apoptosis after irradiation, and our results suggest that the arrest in G(2) prevents the cells from entering mitosis and from apoptosis in the presence of microtubule inhibitors. This arrest was overcome by caffeine, which caused U698 cells to enter mitosis (after irradiation) and become apoptotic in the presence of nocodazole (26% apoptotic cells, 24 h incubation). These results may have implications for the design of clinical multimodality protocols involving ionizing radiation for the treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号