首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The activities of ecto- and cytosolic 5'-nucleotidase (EC 3.1.3.5), adenosine kinase (EC 2.7.1.20), adenosine deaminase (EC 3.5.4.4) and AMP deaminase (EC 3.5.4.6) were compared in ventricular myocardium from man, rats, rabbits, guinea pigs, pigeons and turtles. The most striking variation was in the activity of the ecto-5'-nucleotidase, which was 20 times less active in rabbit heart and 300 times less active in pigeon heart than in rat heart. The cytochemical distribution of ecto-5'-nucleotidase was also highly variable between species. 2. Adenosine formation was quantified in pigeon and rat ventricular myocardium in the presence of inhibitors of adenosine kinase and adenosine deaminase. 3. Both adenosine formation rates and the proportion of ATP catabolized to adenosine were greatest during the first 2 min of total ischaemia at 37 degrees C. Adenosine formation rates were 410 +/- 40 nmol/min per g wet wt. in pigeon hearts and 470 +/- 60 nmol/min per g wet wt. in rat hearts. Formation of adenosine accounted for 46% of ATP plus ADP broken down in pigeon hearts and 88% in rat hearts. 4. The data show that, in both pigeon and rat hearts, adenosine is the major catabolite of ATP in the early stages of normothermic myocardial ischaemia. The activity of ecto-5'-nucleotidase in pigeon ventricle (16 +/- 4 nmol/min per g wet wt.) was insufficient to account for adenosine formation, indicating the existence of an alternative catabolic pathway.  相似文献   

2.
We examined whether reserpine-induced norepinephrine (NE) depletion attenuated the products of adenosine in rat heart. A flexibly mounted microdialysis technique was used to measure the concentration of interstitial adenosine and to assess the activity of ecto-5'-nucleotidase in rat hearts in situ. The microdialysis probe was implanted in the left ventricular myocardium of anesthetized rats and perfused with Tyrode solution containing adenosine 5'-monophosphate (AMP) at rate of 1.0 microliter/min. The baseline level of dialysate adenosine was 0.51 +/- 0.09 microM. The introduction of AMP (100 microM) through the probe increased markedly the dialysate adenosine to 8.95 +/- 0.86 microM, and this increase was inhibited by ecto-5'-nucleotidase inhibitor, alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP, 100 microM), to 0.66 +/- 0.38 microM. Thus, the level of dialysate adenosine is a measure of the ecto-5'-nucleotidase activity in the tissue in situ. AMP concentration for the half-maximal effect of adenosine release (EC(50)) was 107.3 microM. The maximum attainable concentration of dialysate adenosine (E(max)) by AMP was 21.1 microM. However, the EC(50) and E(max) values with reserpinized animals were 106.9 and 7.1 microM, respectively. Electrical stimulation of the left stellate ganglion increased significantly dialysate adenosine concentration, from the control level of 8.66 +/- 0.96 microM to 12.38 +/- 1.11 microM. After stimulation, dialysate adenosine returned to near the prestimulation level. When corresponding experiments were performed with reserpinized animals, the effect of electrical stimulation was abolished. Tyramine (endogenous catecholamine trigger) increased the adenosine concentration in a concentration-dependent manner. However, the elevation of adenosine concentration with reserpinized animals was not observed. These results suggest that reserpine attenuates NE-induced adenosine via stimulation of alpha(1)-adrenoceptor and protein kinase C mediated activation of ecto-5'-nucleotidase in rat heart.  相似文献   

3.
We previously demonstrated that Copenhagen (COP) and DA inbred rat strains show a wide difference in a test for aerobic treadmill running that correlated positively with isolated cardiac function. The purpose of this study was to test adenosine production as a candidate intermediate phenotype that may explain part of the difference in running and cardiac performance in these genetic models for low and high aerobic capacity. Adenosine production was measured as the activity of soluble 5'-nucleotidase and membrane-bound ecto-5'-nucleotidase in the membrane pellet and supernatant fractions of left and right ventricular muscle and gracilis muscle taken from 10 DA and 10 COP rats. Ecto-5'-nucleotidase activity in the membrane pellet of hearts from both DA and COP accounted for the vast majority of the total tissue adenosine production (>90% in the left ventricle and >80% in the right ventricle). Ecto-5'-nucleotidase activity in the pellet fraction was significantly higher in the left (22.4%) and right (46.1%) ventricles of DA rats compared with COP rats, with no differences in total protein content. There were no significant differences between the strains for 5'-nucleotidase activity in the cardiac supernatant, the gracilis pellet, or the gracilis supernatant. These data support the hypothesis that an increase in cardiac adenosine production may contribute to the greater aerobic running capacity of the DA rats.  相似文献   

4.
The contribution of neuronal ATP to interstitial adenosine levels was investigated in isolated perfused rat hearts. Ventricular surface transudates, representing interstitial fluid, were analyzed for norepinephrine, ATP, and adenosine. Exocytotic release of norepinephrine was induced by electrical stimulation of cardiac efferents emanating from the stellate ganglion. Ganglion stimulation increased contractility, interstitial norepinephrine, ATP, and adenosine. Interstitial adenosine was 11- to 27-fold higher than interstitial ATP, suggesting that the released ATP is unlikely the only source of adenosine. In the presence of AOPCP (alpha,beta-methyleneadenosine 5'-diphosphate), an ecto-5'-nucleotidase inhibitor, the ganglion-stimulated increase in interstitial ATP and adenosine reached levels similar to those in the absence of AOPCP, also suggesting that adenosine does not derive from extracellular ATP. The perfusate Ca2+ was raised from 1 to 4 mM to determine the importance of the enhanced contractile function on the levels of norepinephrine, ATP, and adenosine. The results were increases in contractility and interstitial norepinephrine, ATP, and adenosine, which were not suppressed with atenolol, indicating a norepinephrine-independent release of ATP and adenosine. Reserpine treatment and administration of guanethidine depleted the catecholamine stores and diminished the catecholamine release, respectively. However, neither agent altered Ca2+-induced increases in ATP and adenosine. It is concluded that the amount of neuronal-derived ATP is low and most likely does not contribute significantly to interstitial levels of adenosine. Furthermore, elevations in interstitial norepinephrine, ATP, and adenosine are associated with neuronal-independent increases in contractile function.  相似文献   

5.
Adenosine, derived from hydrolysis of 5'-AMP by 5'-nucleotidase activity, may be involved in coupling coronary blood flow to cardiac function and metabolism; it has been postulated as a cardioprotective substance in ischemic myocardium. The stimulation of beta-adrenergic receptors produces an increase in adenosine by 5'-AMP hydrolysis. In addition, it has been demonstrated that in Chagas' disease there is decreased cardiac perfusion. We show in this paper by histochemical and densitometric procedures that ecto-5'-nucleotidase activity increases in ventricles of acutely Trypanosoma cruzi-infected mice and that the density of beta-adrenergic receptors is significantly diminished with affinity similar to controls, showing that a compensatory mechanism was absent. The increase of ecto-5'-nucleotidase in heart myocytes from infected mice may produce cardioprotective adenosine that may be independent of beta-adrenergic function, based on the hypoperfusion conditions of acute chagasic cardiomyopathy.  相似文献   

6.
Adenosine production inside rat polymorphonuclear leucocytes.   总被引:13,自引:5,他引:8       下载免费PDF全文
Adenosine synthesis was studied during 2-deoxyglucose-induced ATP catabolism in intact rat polymorphonuclear leucocytes. When both adenosine kinase (EC 2.7.1.20) and adenosine deaminase (EC 3.5.4.4) were selectively inhibited, adenosine accumulated. Adenosine formation took place inside the intact cells by a metabolic pathway independent of the ecto-5'-nucleotidase (EC 3.1.3.5). Distinct metabolic pathways are proposed for adenosine production from intracellular or extracellular nucleotides.  相似文献   

7.
Adenosine formation and release were studied in 48-h-old cultured ciliary ganglia and confluent peripheral and CNS glial cultures from embryonic chicks. Metabolic poisoning induced by 30 mM 2-deoxyglucose and 2 micrograms/ml oligomycin reduced ATP concentration by 90%. An increase in adenosine accounted for 15-40% of the fall in ATP. Dilazep (3 X 10(-6) M), a nucleoside transport inhibitor, decreased both incorporation of adenosine (an index of nucleoside transport) and release of adenosine by 80-90%. Dilazep trapped the newly formed adenosine intracellularly. A concentration of alpha, beta-methylene ADP that inhibited ecto-5'-nucleotidase by 80-90% did not alter the concentration of adenosine or AMP in neurons, glia, or medium. The results demonstrate that adenosine is formed intracellularly and exported out of the cell via the nucleoside transporter. The participation of ecto-5'-nucleotidase was excluded.  相似文献   

8.
Degradation of adenine nucleotides in myocardial cells has important physiological implications associated with the regulation of the high-energy phosphate precursor pool and the production of adenosine. Adenosine may be released as from cells or, following adenine nucleotides release, they may be metabolized and rapidly converted to adenosine via the action of an ectoenzyme cascade formed by an ATP diphosphohydrolase and a 5'-nucleotidase. Thyroid hormones are known to have profound effects on the cardiovascular system, as demonstrated by the changes accompanying both hypothyroidism and hyperthyroidism. We previously reported that thyroid hormone significantly increases the ecto-5'-nucleotidase (CD73) activity and expression in C6 glioma cells culture. The object of the present study was to evaluate the extracellular adenosine production from AMP in cardiomyocytes and also the effect of (T3) on activity and expression of the enzyme, CD73. Primary cultures of rat ventricular neonatal cardiac myocytes were submitted to increasing doses of T3 for 24 h. Cell viability and purity were estimated by measuring the release of lactate dehydrogenase (LDH) activity and immunofluorescence cell staining, respectively. CD73 activity was measurement using a malachite green method and RT-PCR was used to analyze enzyme expression. T3 stimulated CD73 activity and expression of the cells, suggesting that this effect could promote an increase in adenosine formation and, therefore, has an important modulatory role in the elicitation of responses that serve to restore the tissue oxygen supply-to-demand ratio back to normal.  相似文献   

9.
PKG activator 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (CPT) at reperfusion protects ischemic hearts, but the mechanism is unknown. We recently proposed that in preconditioned hearts PKC lowers the threshold for adenosine to initiate signaling from low-affinity A2b receptors during early reperfusion thus allowing endogenous adenosine to activate survival kinases phosphatidylinositol 3-kinase (PI3K) and ERK. We tested whether CPT might also sensitize A2b receptors to adenosine. CPT (10 microM) during the first minutes of reperfusion markedly reduced infarction in isolated rabbit hearts undergoing 30-min regional ischemia/2-h reperfusion, and salvage was blocked by MRS 1754, an A2b-selective antagonist. Coadministration of wortmannin (PI3K inhibitor) or PD-98059 (MEK1/2 and therefore ERK1/2 inhibitor) also blocked protection. In nonischemic hearts, 10-min infusion of CPT did not change phosphorylation of Akt or ERK1/2. Neither did a subthreshold dose (2.5 nM) of the nonselective but A2b-potent receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA). However, when 2.5 nM NECA was combined with 10 microM CPT, both phospho-Akt and phospho-ERK1/2 significantly increased, indicating CPT had lowered the threshold for A2b-dependent signaling. The PKC antagonist chelerythrine blocked this phosphorylation induced by CPT + NECA. Chelerythrine also blocked the anti-infarct effect of CPT as did nonselective (glibenclamide) and mitochondrial-selective (5-hydroxydecanoate) K(ATP) channel blockers. A free radical scavenger, N-(2-mercaptopropionyl)glycine, also blocked CPT protection. We propose CPT targets PKG, which activates PKC through mitochondrial K(ATP) channel (mitoKATP)-dependent redox signaling, a sequence mimicking that already documented in preconditioning. Activated PKC then augments sensitivity of normally low-affinity cardiac adenosine A2b receptors so endogenous adenosine can protect by activating Akt and ERK.  相似文献   

10.
Here we report the effects of metronidazole and tinidazole on NTPDase1 and ecto-5'-nucleotidase from intact cells of Trichomonas vaginalis. Adenosine triphosphate (ATP) and adenosine diphosphate (ADP) hydrolysis was 5- to 7-fold higher for the fresh clinical strain, when compared with the ATCC (American Type Culture Collection) strain. ATP hydrolysis was activated in the presence of metronidazole in the ATCC strain, whilst it was inhibited 33% by 50 microM tinidazole in a fresh clinical isolate. The treatment of cells in the presence of metronidazole for 2 h inhibited ATP and ADP hydrolysis, whilst treatment with tinidazole inhibited ATP and ADP hydrolysis only in the fresh clinical isolate. The drugs did not change the ecto-5'-nucleotidase activity for both strains. Our results suggest that the modulation of extracellular ATP and ADP levels during treatment with these drugs could be a parasitic defence strategy as a survival mechanism in an adverse environment.  相似文献   

11.
Since amlodipine, a long-acting Ca channel blocker, increases both NO and adenosine production in canine hearts, we investigated that amlodipine activates both ecto-5(')-nucleotidase responsible for adenosine production and NO synthase (NOS) for NO production in human umbilical venous endothelial cells (HUVECs), and its cellular signaling. We measured activities of ecto-5(')-nucleotidase and NOS in HUVECs in the condition with additions of xanthine (100 microM)+xanthine oxidase (1.6 x 10(-3)U/ml) in the presence or absence of amlodipine (1 x 10(-9)-1 x 10(-6)M). Amlodipine increased both ecto-5(')-nucleotidase and NOS activities. Xanthine+xanthine oxidase deactivated both NOS and ecto-5(')-nucleotidase, and amlodipine increased both activities of NOS and ecto-5(')-nucleotidase by 117+/-33% and 48+/-6%, respectively. Amlodipine phosphorylated p38MAP kinase and that an inhibitor of p38MAP kinase inhibited the amlodipine-induced activation of both NOS and ecto-5(')-nucleotidase. Furthermore, amlodipine increased both adenosine and NO production in the canine ischemic hearts. We concluded that amlodipine activates both NOS and ecto-5(')-nucleotidase via p38MAP kinase in vitro and enhances both NO and adenosine production in vivo.  相似文献   

12.
Adenosine, a well-known neuromodulator, may be formed intracellularly in the CNS from degradation of AMP and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. This study reports the enzymatic properties of an ecto-5'-nucleotidase activity in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for AMP hydrolysis in a pH range of 7.0-7.5 in the presence of Mg(2+). The enzyme presented a maximal activity for AMP hydrolysis at 37 degrees C. The apparent K(m) and V(max) values for Mg(2+)-AMP were 135.3+/-16 microM and 29+/-4.2 nmol Pi.min(-1).mg(-1) protein, respectively. The enzyme was able to hydrolyze both purine and pyrimidine monophosphate nucleotides, such as UMP, GMP and CMP. Levamisole and tetramisole (1 mM), specific inhibitors of alkaline phosphatases, did not alter the enzymatic activity. However, a significant inhibition of AMP hydrolysis (42%) was observed in the presence of 100 microM alpha,beta-methylene-ADP, a known inhibitor of ecto-5'-nucleotidase. Since 5'-nucleotidase represents the major enzyme responsible for the formation of extracellular adenosine, the enzymatic characterization is important to understand its role in purinergic systems and the involvement of adenosine in the regulation of neurotransmitter release.  相似文献   

13.
Adenosine and arachidonate (AA) fulfil opposite modulatory roles, arachidonate facilitating and adenosine inhibiting cellular responses. To understand if there is an inter-play between these two neuromodulatory systems, we investigated the effect of AA on extracellular adenosine metabolism in hippocampal nerve terminals. AA (30 microm) facilitated by 67% adenosine evoked release and by 45% ATP evoked release. These effects were not significantly modified upon blockade of lipooxygenase or cyclooxygenase and were attenuated (52-61%) by the protein kinase C inhibitor, chelerythrine (6 microm). The ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP (100 microm), caused a larger inhibition (54%) of adenosine release in the presence of AA (30 microm) compared with control (37% inhibition) indicating that the AA-induced extracellular adenosine accumulation is mostly originated from an increased release and extracellular catabolism of ATP. This AA-induced extracellular adenosine accumulation is further potentiated by an AA-induced decrease (48%) of adenosine transporters capacity. AA (30 microm) increased by 36-42% the tonic inhibition by endogenous extracellular adenosine of adenosine A(1) receptors in the modulation of acetylcholine release and of CA1 hippocampal synaptic transmission in hippocampal slices. These results indicate that AA increases tonic adenosine modulation as a possible feedback loop to limit AA facilitation of neuronal excitability.  相似文献   

14.
Adenosine plays a role in promoting sleep, an effect that is thought to be mediated in the basal forebrain. Adenosine levels vary in this region with prolonged wakefulness in a unique way. The basis for this is unknown. We examined, in rats, the activity of the major metabolic enzymes for adenosine - adenosine deaminase, adenosine kinase, ecto- and cytosolic 5'-nucleotidase - in sleep/wake regulatory regions as well as cerebral cortex, and how the activity varies across the day and with sleep deprivation. There were robust spatial differences for the activity of adenosine deaminase, adenosine kinase, and cytosolic and ecto-5'-nucleotidase. However, the basal forebrain was not different from other sleep/wake regulatory regions apart from the tuberomammillary nucleus. All adenosine metabolic enzymes exhibited diurnal variations in their activity, albeit not in all brain regions. Activity of adenosine deaminase increased during the active period in the ventrolateral pre-optic area but decreased significantly in the basal forebrain. Enzymatic activity of adenosine kinase and cytosolic-5'-nucleotidase was higher during the active period in all brain regions tested. However, the activity of ecto-5'-nucleotidase was augmented during the active period only in the cerebral cortex. This diurnal variation may play a role in the regulation of adenosine in relationship to sleep and wakefulness across the day. In contrast, we found no changes specifically with sleep deprivation in the activity of any enzyme in any brain region. Thus, changes in adenosine with sleep deprivation are not a consequence of alterations in adenosine enzyme activity.  相似文献   

15.
Adenosine, through activation of its A(1) receptors, has neuroprotective effects during hypoxia and ischemia. Recently, using transgenic mice with neuronal expression of human equilibrative nucleoside transporter 1 (hENT1), we reported that nucleoside transporter-mediated release of adenosine from neurons was not a key mechanism facilitating the actions of adenosine at A(1) receptors during hypoxia/ischemia. The present study was performed to test the importance of CD73 (ecto-5'-nucleotidase) for basal and hypoxic/ischemic adenosine production. Hippocampal slice electrophysiology was performed with CD73(+/+) and CD73(-/-) mice. Adenosine and ATP had similar inhibitory effects in both genotypes, with IC(50) values of approximately 25 μM. In contrast, ATP was a less potent inhibitor (IC(50) = 100 μM) in slices from mice expressing hENT1 in neurons. The inhibitory effects of ATP in CD73(+/+) and CD73(-/-) slices were blocked by the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and were enhanced by the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBTI), consistent with effects that are mediated by adenosine after metabolism of ATP. AMP showed a similar inhibitory effect to ATP and adenosine, indicating that the response to ATP was not mediated by P2 receptors. In comparing CD73(-/-) and CD73(+/+) slices, hypoxia and oxygen-glucose deprivation produced similar depression of synaptic transmission in both genotypes. An inhibitor of tissue non-specific alkaline phosphatase (TNAP) was found to attenuate the inhibitory effects of AMP and ATP, increase basal synaptic activity and reduce responses to oxygen-glucose deprivation selectively in slices from CD73(-/-) mice. These results do not support an important role for CD73 in the formation of adenosine in the CA1 area of the hippocampus during basal, hypoxic or ischemic conditions, but instead point to TNAP as a potential source of extracellular adenosine when CD73 is absent.  相似文献   

16.
Abstract: The components of the ectonucleotidase pathway at the immunoaffinity-purified striatal cholinergic synapse have been studied. The ecto-ATPase (EC 3.6.1.15) had a K m of 131 γ M , whereas the ecto-ADPase (EC 3.6.1.6) had a K m of 58 γ M , was Ca2+-dependent, and was inhibited by the ATP analogue 5'-adenylylimidodiphosphate (AMPPNP). The ecto-5'-nucleotidase (EC 3.1.3.5) had a K m of 21 γ M , was inhibited by AMPPNP and α,β-methylene ADP, and by a specific antiserum. The V max values of the ATPase, ADPase, and 5'-nucleotidase enzymes present at this synapse were in a ratio of 30:14:1. Very little ecto-adenylate kinase activity was detected on these purified synapses. The intraterminal 5'-nucleotidase enzyme, which amounted to 40% of the total 5'-nucleotidase activity, was inhibited by AMPPNP, α,β-methylene ADP, and the antiserum, and also had the same kinetic properties as the ectoenzyme. The time course of ATP degradation to adenosine outside the nerve terminals showed a delay, followed by a period of sustained adenosine production. The delay in adenosine production was proportional to the initial ATP concentration, was a consequence of feedforward inhibition of the ADPase and 5'-nucleotidase, and was inversely proportional to the ecto-5'-nucleotidase activity. The function and characteristics of this pathway and the central role of 5'-nucleotidase in the regulation of extraterminal adenosine concentrations are discussed.  相似文献   

17.
The effect of prolonged wakefulness on adenosine kinase (AK), ecto-5'-nucleotidase and endo-5'-nucleotidase activity was assessed in the present study. Rats were sleep deprived for 3 or 6h, and one group was allowed to sleep 2h of recovery sleep after the 6h deprivation. The cortex and the basal forebrain were dissected, and frozen rapidly on dry ice. The enzyme activity of adenosine kinase was measured by monitoring the conversion of [2-3H]-adenosine into [3H]-adenosine monophosphate (AMP) and the ecto-5'-nucleotidase and endo-5'-nucleotidase activities by monitoring the conversion of [2-3H]-AMP into [3H]-adenosine. The enzyme activities did not change during deprivation or recovery sleep in either cortex or basal forebrain when compared to unhandled controls. Significant diurnal variation in enzyme activities was noted in both brain areas. In the basal forebrain adenosine kinase and both nucleotidases showed their lowest activity in the middle of the rest phase, 6h after lights on, suggesting a low level of adenosine metabolism, both production and degradation at this time point. In the cortex adenosine kinase had a diurnal activity pattern similar to the basal forebrain and the ecto-5'-nucleotidase activity was low already early in the rest phase, 3h after lights on, and remained low until the end part of the rest phase, 8h after lights on. Endo-5'-nucleotidase lacked diurnal variation. These activity patterns may be associated with the lower level of energy metabolism during sleep compared to wakefulness.  相似文献   

18.
Although adenosine is an important mediator of ischemic preconditioning (IPC), its relative contribution to IPC remains unknown. Because adenosine is formed through the hydrolysis of ATP, the present study investigated the role of ATP and adenosine in IPC. Isolated and buffer-perfused rat hearts underwent IPC by three cycles of 5-min ischemia and 5-min reperfusion before 25 min of global ischemia. The rate-pressure product (RPP) 30 min after reperfusion was taken as an endpoint of functional protection. Interstitial fluid (ISF) adenine nucleotides and adenosine were measured by cardiac microdialysis techniques. Inhibition of IPC-induced recovery of RPP was partial by the adenosine receptor antagonist 8-(p-sulfophenyl)theophylline (SPT; 100 microM) or by the structurally distinct P2Y purinoceptor antagonists suramin (300 microM) or reactive blue (RB; 10 microM) but was additive when SPT was given with suramin or RB. The P2X antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium (50 microM) had no effect on functional protection. The improved functional recovery was not significantly affected by an ecto-5'-nucleotidase inhibitor, alpha,beta-methylene adenosine diphosphate (AMP-CP; 100 microM), alone but was inhibited by AMP-CP plus SPT, suramin, or RB. ISF ATP and adenosine increased temporarily by 10-fold during IPC. AMP-CP augmented the increase in ISF ATP associated with the decrease in ISF adenosine. There was a reciprocal correlation between the ISF concentration of ATP and adenosine in preconditioned hearts. In addition, there was a significant correlation between ISF adenosine and ATP and the inhibitory potency of SPT and suramin or RB against functional protection conferred by IPC. These results suggest that extracellular ATP and adenosine play a complementary role in IPC through P2Y purinoceptors and adenosine receptors, respectively.  相似文献   

19.
The mechanism underlying beta,gamma-methylene ATP (beta,gamma-MeATP)-induced cAMP elevation was investigated in rat glioma C6Bu-1 cells. Beta,gamma-MeATP increased forskolin-stimulated cAMP formation in a manner sensitive to both the P1 antagonist xanthine amine congener (XAC) and the P2 antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Adenosine deaminase (ADA; 1 U/mL), which abolished the adenosine-induced response, did not eliminate the beta,gamma-MeATP-induced response. However, combination of ADA with alpha,beta-methylene ADP (alpha,beta-MeADP), an ecto-5'-nucleotidase inhibitor, blocked the beta,gamma-MeATP-induced response. AMP, the substrate for ecto-5'-nucleotidase, also induced cAMP formation in a manner sensitive to XAC and alpha,beta-MeADP inhibition. However, the AMP-induced response was not blocked by PPADS. HPLC analyses revealed that adenosine was generated from beta,gamma-MeATP and AMP. In addition, alpha,beta-MeADP inhibited the conversion of beta,gamma-MeATP and AMP to adenosine, whereas PPADS blocked adenosine formation from beta,gamma-MeATP but not from AMP. [3H]Adenosine generated from [3H]AMP was preserved on the cell surface environment even in the presence of ADA. The mRNAs for ecto-phosphodiesterase/pyrophosphatase 1 (EC 3.1.4.1), ecto-5'-nucleotidase (EC 3.1.3.5) and adenosine A2B receptor were detected by RT-PCR. These results suggest that C6Bu-1 cells possess ecto-enzymes converting beta,gamma-MeATP to adenosine, and the locally accumulated adenosine in this mechanism efficiently stimulates A2B receptors in a manner resistant to exogenous ADA.  相似文献   

20.
1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号