共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbon catabolite repression in yeast. 总被引:44,自引:0,他引:44
J M Gancedo 《European journal of biochemistry》1992,206(2):297-313
2.
The araCi protein differs in stability from araC+ protein and alters the concentration of cyclic adenosine-3', 5'-monophosphate required to maximally stimulate L-arabinose isomerase synthesis in an in vitro protein-synthesizing system. 相似文献
3.
Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression 总被引:1,自引:0,他引:1 下载免费PDF全文
We have cloned a Candida albicans gene (CaMIG1) that encodes a protein homologous to the DNA-binding protein Mig1 from Saccharomyces cerevisiae (ScMig1). The C. albicans Mig1 protein (CaMig1) differs from ScMig1, in that, among other things, it lacks a putative phosphorylation site for Snf1 and presents several long stretches rich in glutamine or in asparagine, serine, and threonine and has the effector domain located at some distance (50 amino acids) from the carboxy terminus. Expression of CaMIG1 was low and was similar in glucose-, sucrose-, or ethanol-containing media. Disruption of the two CaMIG1 genomic copies had no effect in filamentation or infectivity. Levels of a glucose-repressible alpha-glucosidase, implicated in both sucrose and maltose utilization, were similar in wild-type or mig1/mig1 cells. Disruption of CaMIG1 had also no effect on the expression of the glucose-repressed gene CaGAL1. CaMIG1 was functional in S. cerevisiae, as judged by its ability to suppress the phenotypes produced by mig1 or tps1 mutations. In addition, CaMig1 formed specific complexes with the URS1 region of the S. cerevisiae FBP1 gene. The existence of a possible functional analogue of CaMIG1 in C. albicans was suggested by the results of band shift experiments. 相似文献
4.
5.
6.
The glucose analog, 3-O-methyl-D-glucose, inhibited growth of yeast on non-fermentable carbon sources. The sugar was phosphorylated by the yeast and also in vitro by a commercial preparation of yeast hexokinase. The chromatographic behaviour of the phosphorylated product was identical in both cases. This suggests that 3-O-methyl-D-glucose is phosphorylated to form 3-O-methyl-D-glucose 6-phosphate. The inhibition of the growth appears to be due to interference with the derepression of several enzymes necessary to grow on non-fermentable carbon sources. Spontaneous mutants whose growth was unaffected by 3-O-methyl-D-glucose were isolated. In these mutants there was no significant accumulation of the phosphorylated ester and the derepression of the enzymes tested was not affected by the glucose analog. 相似文献
7.
Summary The role of mitochondria in carbon catabolite repression in Saccharomyces cerevisiae was investigated by comparing normal, respiratory competent (RHO) strains with their mitochondrially inherited, respiratory deficient mutant derivatives (rho). Formation of maltase and invertase was used as an indicator system for the effect of carbon catabolite repression on carbon catabolic reactions. Fermentation rates for glucose, maltose and sucrose were the same in RHO and rho strains. Specific activities of maltase and invertase were usually higher in the rho-mutants. A very pronounced difference in invertase levels was observed when cells were grown on maltose; rho-mutants had around 30 times more invertase than their RHO parent strains.The fact that rho-mutants were much less sensitive to carbon catabolite repression of invertase synthesis than their RHO parents was used to search for the mitochondrial factor(s) or function(s) involved in carbon catabolite repression. A possible metabolic influence of mitochondria on this system of regulation was tested after growth of RHO strains under anaerobic conditions (no respiration nor oxidative phosphorylation), in the presence of KCN (respiration inhibited), dinitrophenol (uncoupling of oxidative phosphorylation) and of both inhibitors anaerobic conditions and dinitrophenol had no effect on the extent of invertase repression. KCN reduced the degree of repression but not to the level found in rho-mutants. A combination of both inhibitors gave the same results as with KCN alone. Erythromycin and chloramphenicol were used as specific inhibitors of mitochondrial protein synthesis. Erythromycin prevented the formation of mitochondrial respiratory systems but did not induce rho-mutants under the conditions used. However, repression of invertase was as strong as in the absence of the inhibitor. Chloramphenicol led only to a slight reduction of the respiratory systems and did not affect invertase levels. A combination of both antibiotics had about the same effect as growth in the presence of KCN.The results showed that mitochondria are involved in carbon catabolite repression and they cause an increase in the degree of repression. These effects cannot be due to mere metabolic activities nor to factors made on the mitochondrial protein synthesizing machinery. This regulatory role of mitochondria is observed as long as an intact mitochondrial genome is maintained. 相似文献
8.
9.
Involvement of the lac regulatory genes in catabolite repression in Escherichia coli 总被引:1,自引:4,他引:1 下载免费PDF全文
1. Acute transient catabolite repression of beta-galactosidase synthesis, observed when glucose is added to glycerol-grown cells of Escherichia coli (Moses & Prevost, 1966), requires the presence of a functional operator gene (o) in the lactose operon. Total deletion of the operator gene abolished acute transient repression, even in the presence of a functional regulator gene (i). 2. Regulator constitutives (i(-)) also show transient repression provided that the operator gene is functional. Regulator deletion mutants (i(del)), with which to test specifically the role of the i gene, have not so far been available. 3. The above mutants, showing various changes in the lactose operon, show no alteration in the effect of glucose on induced tryptophanase synthesis. Glucose metabolism, as measured in terms of the release of (14)CO(2) from [1-(14)C]glucose and [6-(14)C]glucose, also showed no differences between strains exhibiting or not exhibiting transient repression. This suggests no change in the operation of the pentose phosphate cycle, a metabolic activity known to be of paramount importance for glucose repression of beta-galactosidase synthesis (Prevost & Moses, 1967). 4. Chronic permanent repression by glucose of beta-galactosidase synthesis (less severe in degree than acute transient repression) persists in strains in which transient repression has been genetically abolished. Constitutive alkaline-phosphatase synthesis, which shows no transient repression, also demonstrates chronic permanent repression by glucose. 5. Chloramphenicol repression also persists in mutants with no transient repression, and also affects alkaline phosphatase. It is suggested that chronic permanent repression and chloramphenicol repression are non-specific, and that they do not influence beta-galactosidase synthesis via the regulatory system of the lactose operon. 相似文献
10.
Summary Expression of the alginate lyase gene (aly) from Pseudomonas sp. W7 in Escherichia coli was very high (about 40%) and regulated by catabolite repression. The aly promoter was independent upon activation by cyclic AMP-cAMP receptor protein (cAMP-CRP) complex. When the aly promoter was removed by the construction of pKAL22, alginate lyase, which was under the control of lac promoter in E.coli, was markedly decreased (about 10%). This result confirmed that the aly promoter has stronger expression system in E.coli than lac promoter. 相似文献
11.
12.
Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. 总被引:3,自引:2,他引:3 下载免费PDF全文
A glucose kinase (glkA) mutant of Streptomyces coelicolor A3(2) M145 was selected by the ability to grow in the presence of the nonmetabolizable glucose analog 2-deoxyglucose. In this glkA mutant, carbon catabolite repression of glycerol kinase and agarase was relieved on several carbon sources tested, even though most of these carbon sources are not metabolized via glucose kinase. This suggests that catabolite repression is not regulated by the flux through glucose kinase and that the protein itself has a regulatory role in carbon catabolite repression. A 10-fold overproduction of glucose kinase also results in relief of catabolite repression, suggesting that excess glucose kinase can titrate the repressing signal away. This could be achieved directly by competition of excess glucose kinase with its repressing form for binding sites on DNA promoter regions or indirectly by competition for binding of another regulatory protein. 相似文献
13.
Margarita Orejas rew Peter MacCabe José Antonio Pérez González Sudeep Kumar & Daniel Ramón 《Molecular microbiology》1999,31(1):177-184
Expression of the Aspergillus nidulans 22 kDa endoxylanase gene, xlnA , is controlled by at least three mechanisms: specific induction by xylan or xylose; carbon catabolite repression (CCR); and regulation by ambient pH. Deletion analysis of xlnA upstream sequences has identified two positively acting regions: one that mediates specific induction by xylose; and another that mediates the influence of ambient pH and contains two PacC consensus binding sites. The extreme derepressed mutation creAd 30 results in considerable, although not total, loss of xlnA glucose repressibility, indicating a major role for CreA in its CCR. Three consensus CreA binding sites are present upstream of the structural gene. Point mutational analysis using reporter constructs has identified a single site, xlnA .C1, that is responsible for direct CreA repression in vivo . Using the creAd 30 derepressed mutant background, our results indicate the existence of indirect repression by CreA. 相似文献
14.
By deletion analysis of the fusion genes FBP1-lacZ and PCK1-lacZ we have identified a number of strong regulatory regions in the genes FBP1 and PCK1 which encode fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase. Lack of expression of beta-galactosidase in fusions lacking sequences from the coding regions suggests the existence of downstream activating elements. Both promoters have several UAS and URS regions as well as sites implicated in catabolite repression. We have found in both genes consensus sequences for the binding of the same regulatory proteins, such as yAP1, MIG1 or the complex HAP2/HAP3/HAP4. Neither deletion nor overexpression of the MIG1 gene affected the regulated expression of the FBP1 or PCK1 genes. 相似文献
15.
New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. 总被引:18,自引:3,他引:18 下载免费PDF全文
A mutation causing resistance to carbon catabolite repression in gene HEX2, mutant allele hex2-3, causes an extreme sensitivity to maltose when in combination with the genes necessary for maltose metabolism. This provided a convenient system for the selective isolation of mutations in genes specifically required for maltose metabolism and other genes involved in general carbon catabolite repression. In addition to reversion of the hex2-3 allele, mutations in three other genes were detected. These genes were called CAT1, CAT3, and MUR1 and in a mutated form abolished maltose inhibition caused by mutant allele hex2-3. Mutant alleles cat1 and cat3 also restored normal repression in the presence of the hex2-3 allele. Segregants having only mutant alleles cat1 or cat3 were obtained by tetrad analysis. These segregants could not grow on nonfermentable carbon sources. Mutant alleles of gene CAT1 were allelic to a mutant allele cat1-1 previously isolated (Zimmermann et al., Mol. Gen. Genet. 151:95-103). Such mutants prevented derepression not only of the maltose catabolizing system, the selected property, but also of glyoxylate shunt and gluconeogenic enzymes. However, respiratory activities and invertase formation were not affected under derepressing conditions. cat3 mutants had the same phenotypic properties as cat1 mutants. This showed that carbon metabolism in yeast cells is under a very complex and ramified control of repressing and derepressing genes, which are interdependent. 相似文献
16.
17.
18.
19.
20.
Aranda-Olmedo I Marín P Ramos JL Marqués S 《Applied and environmental microbiology》2006,72(11):7418-7421
The Pseudomonas putida KT2440 TOL upper pathway is repressed under nonlimiting conditions in cells growing in chemostat with succinate as a carbon source. We show that the ptsN gene product IIA(Ntr) participates in this repression. Crc, involved in yeast extract-dependent repression in batch cultures, did not influence expression when cells were growing in a chemostat with succinate at maximum rate. 相似文献