首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Down syndrome (DS) in humans, or trisomy of autosome 21, represents the hyperdiploidy that most frequently survives gestation, reaching an incidence of 1 in 700 live births. The condition is associated with multisystemic anomalies, including those affecting the central nervous system (CNS), determining a characteristic mental retardation. At a neuronal level, our group and others have shown that the condition determines marked alterations of action potential and ionic current kinetics, which may underlie abnormal processing of information by the CNS. Since the use of human tissue presents both practical and ethical problems, animal models of the human condition have been sought. Murine trisomy 16 (Ts16) is a model of the human condition, due to the great homology between human autosome 21 and murine 16. Both conditions share the same alterations of electrical membrane properties. However, the murine Ts16 condition is unviable (animals die in utero), thus limiting the quantity of tissue procurable. To overcome this obstacle, we have established immortal cell lines from normal and Ts16 mice with a method developed by our group that allows the stable in vitro immortalization of mammalian tissue, yielding cell lines which retain the characteristics of the originating cells. Cell lines derived from cerebral cortex, hippocampus, spinal cord and dorsal root ganglion of Ts16 animals show alterations of intracellular Ca2+ signals in response to several neurotransmitters (glutamate, acetylcholine, and GABA). Gene overdose most likely underlies these alterations in cell function, and the identification of the relative contribution of DS associated genes on such specific neuronal dysfunction should be investigated. This could enlighten our understanding on the contribution of these genes in DS, and identify new therapeutic targets.  相似文献   

5.
The role of cardiopulmonary receptors in the control of renal sympathetic nerve activity and of renin release is reviewed. The evidence indicates that cardiopulmonary receptors with vagal afferents exert a tonic inhibition on both renal nerve activity and on renin release. The magnitude of this inhibition appears directly related to changes in blood volume. Atrial as well as ventricular receptors can influence the secretion of renin. Cardiopulmonary receptors with vagal afferents may also reflexly modulate renal prostaglandin secretion. There is preliminary evidence to suggest that cardiopulmonary receptors with sympathetic afferents can influence renal nerve activity. The limitations of previous studies are outlined and a direction for future studies is suggested. It is concluded that alterations in cardiopulmonary vagal afferent input and the resulting changes in renal nerve activity and in renin release are appropriate for the maintenance of blood volume homeostasis.  相似文献   

6.
Oxidative stress has emerged as a key deleterious factor in brain ischemia and reperfusion. Malfunction of the oxidative respiratory chain in mitochondria combines with the activation of cytoplasmic oxidases to generate a burst of reactive oxygen species that cannot be neutralised by the cell’s antioxidant mechanisms. As a result, oxidative stress contributes directly to necrosis and apoptosis through a number of pathways in ischemic tissue. Pharmacological intervention with antioxidants or enhancers of endogenous antioxidant molecules is proving to be difficult due to the speed and scope of the oxidative impact. Additionally, the knowledge that neuronal fate in ischemic stroke is tightly linked to other brain cells like endothelial cells and astrocytes has shifted the focus of study from isolated neurons to the neurovascular unit. For this reason, recent efforts have been directed towards understanding the sources of oxidative stress in ischemic stroke and attempting to block the generation of oxygen radicals.  相似文献   

7.
8.
Prostaglandins are part of the family of oxygenated metabolites of arachidonic acid known collectively as eicosanoids. While they are formed, act, and are inactivated locally and rarely circulate in plasma, they can affect blood flow in some tissues and so might contribute to the control of peripheral vascular resistance. Few studies have shown any derangement of total body prostaglandin synthesis or metabolism in hypertension, but increased renal synthesis of one prostanoid, thromboxane A2, has been noted in spontaneously hypertensive rats and some hypertensive humans. This potent vasoconstrictor may account for the increased renal vascular resistance and suppressed plasma renin activity seen in many patients with hypertension. Increased renal vascular resistance could increase the blood pressure directly as a component of total peripheral resistance or indirectly by increasing glomerular filtration fraction and tubular sodium reabsorption. Specific thromboxane synthesis inhibitors not only decrease renal thromboxane production but also increase renal vasodilator prostaglandin synthesis when prostaglandin synthesis is stimulated. This redirection of renal prostaglandin synthesis toward prostacyclin might be of benefit in correcting a fundamental renal defect in patients with hypertension.  相似文献   

9.
Respiratory exchange in decapod crustacea requires the coordinated activity of the heart and the scaphognathites, appendages which ventilate the gills. There is common central nervous system neuronal modulation of both autogenically active systems as well as direct neuronal communication between both systems. The heart and scaphognathites also respond directly to oxygen tension. The neuronal control of the scaphognathites also respond directly to oxygen tension. The neuronal control of the scaphognathites is analyzed at several levels. Particular attention is directed toward the means by which the innately organized and stereotyped motor pattern for forward beating can be altered to produce reversed beating. The importance of sensory feedback in maintaining normal rates of scaphognathite beating is noted. And the phenomenon of bilateral coordination between the morphologically independent scaphognathites is described. Several different models of parts of the over-all scaphognathite neuronal circuitry are presented for heuristic purposes.  相似文献   

10.
Neuronal control of energy homeostasis   总被引:1,自引:0,他引:1  
Gao Q  Horvath TL 《FEBS letters》2008,582(1):132-141
Neuronal control of body energy homeostasis is the key mechanism by which animals and humans regulate their long-term energy balance. Various hypothalamic neuronal circuits (which include the hypothalamic melanocortin, midbrain dopamine reward and caudal brainstem autonomic feeding systems) control energy intake and expenditure to maintain body weight within a narrow range for long periods of a life span. Numerous peripheral metabolic hormones and nutrients target these structures providing feedback signals that modify the default "settings" of neuronal activity to accomplish this balance. A number of molecular genetic tools for manipulating individual components of brain energy homeostatic machineries, in combination with anatomical, electrophysiological, pharmacological and behavioral techniques, have been developed, which provide a means for elucidating the complex molecular and cellular mechanisms of feeding behavior and metabolism. This review will highlight some of these advancements and focus on the neuronal circuitries of energy homeostasis.  相似文献   

11.
Adenine nucleotides and respiration were assayed with rat kidney mitochondria depleted of adenine nucleotides by pyrophosphate treatment and by normothermic ischemia, respectively, with the aim of identifying net uptake of ATP as well as elucidating the contribution of adenine nucleotide loss to the ischemic impairment of oxidative phosphorylation. Treatment of rat kidney mitochondria with pyrophosphate caused a loss of adenine nucleotides as well as a decrease of state 3 respiration. After incubation of pyrophosphate-treated mitochondria with ATP, Mg2+ and phosphate, the content of adenine nucleotides increased. We propose that kidney mitochondria possess a mechanism for net uptake of ATP. Restoration of a normal content of matrix adenine nucleotides was related to full recovery of the rate of state 3 respiration. A hyperbolic relationship between the matrix content of adenine nucleotides and the rate of state 3 respiration was observed. Mitochondria isolated from kidneys exposed to normothermic ischemia were characterized by a decrease in the content of adenine nucleotides as well as in state 3 respiration. Incubation of ischemic mitochondria with ATP, Mg2+ and phosphate restored the content of adenine nucleotides to values measured in freshly-isolated mitochondria. State 3 respiration of ischemic mitochondria reloaded with ATP recovered only partially. The rate of state 3 respiration increased by ATP-reloading approached that of uncoupler-stimulated respiration measured with ischemic mitochondria. These findings suggest that the decrease of matrix adenine nucleotides contributes to the impairment of ischemic mitochondria as well as underlining the occurrence of additional molecular changes of respiratory chain limiting the oxidative phosphorylation.  相似文献   

12.
13.
The extractive nature of recreational hunting may provide a service to both the ecosystem and society, namely the control of problem species. We reviewed the annual wild boar hunting bag data from hunting sites in Asturias (Spain) from 2000/01 to 2013/14, paying particular attention to the evolution on hunting estates after ban periods. We hypothesized that the annual hunting bag after a hunting ban would be larger than that of the pre-ban period, and that this difference could provide an indication of hunters’ relative contribution to wild boar population regulation. The total hunting bag grew during the study period, from 3723 wild boar (0.39ind/km2) in the 2000/01 hunting year to 7593 in that of 2013/14 (0.79ind/km2)—a mean annual increase of 5.63%. Low hunting quotas cannot be blamed for these growing trends, since no more than 50% of the authorized animals are hunted. The growth of the mean annual pre-ban hunting bag on the estates on which hunting bans took place was 8.46%. The hunting bag grew by 40.33% immediately after the hunting ban ended—a growth rate seven times higher than that of the background hunting bag. This constitutes a proxy of the regulatory effect of hunters on wild boar population growth. Following the remarkable increase after the ban, the wild boar hunting bag attained values that were slightly lower than those of the pre-ban period, which indicates that hunters are able to reduce wild boar abundance. Hunting, therefore, provides an important service to both the ecosystem and society by contributing to regulating the growth of problem species such as the wild boar.  相似文献   

14.
15.
Summary The cell bodies and function of twelve neurons whose impulse pattern is clearly related to that of the swimming rhythm were identified in the segmental ganglion of the leech. These include excitatory and inhibitory motor neurons of the dorsal and ventral longitudinal muscles and the excitatory flattener motor neuron of the dorsoventral muscles. During swimming the membrane potential of these cells oscillates between a depolarized and a hyperpolarized phase. The activity of this ensemble of cells is sufficient to account for the contractile rhythm of the swimming animal. The following connections were found between these motor neurons. Electrotonic junctions link: (1) bilaterally homologous cells; (2) excitors of the dorsal longitudinal muscles; (3) excitors of the ventral longitudinal muscles; (4) inhibitors of both dorsal and ventral longitudinal muscles. The dorsal inhibitors project via an inhibitory pathway to the dorsal excitors, and the ventral inhibitor projects via an inhibitory pathway to the ventral excitors. The membrane potential oscillation of the excitors is at least partly attributable to the phasic inhibitory synaptic input which they receive from the inhibitors. The excitatory shortener motor neuron of the entire longitudinal musculature is maintained in an inactive state during swimming. This control is achieved by rectifying electrotonic junctions linking this neuron to the dorsal and ventral excitors. These junctions allow passage of only depolarizing current from the shortener to the dorsal and ventral excitors and of only hyperpolarizing current in the reverse direction. Furthermore, both dorsal and ventral inhibitors project via inhibitory pathways to the shortener neuron.We are greatly indebted to Ann Stuart for advice and help in this study, and for communicating to us some unpublished findings. We thank Elizabeth Mullenbach for excellent technical assistance.This research was supported by grant GB 31933 X from the National Science Foundation, and by Public Health Service Research grant GM 17866 and Training Grant GM 01389 from the Institute for General Medical Sciences.  相似文献   

16.
Summary The leech heartbeat consists of a constriction-dilation rhythm of two lateral heart tubes extending over the length of the body. The beats of the segmental sections of these two tubes are coordinated in such a manner that the heart tube of one body side produces a frontward peristaltic wave while the heart tube on the other body side produces nearly concerted constrictions. This rhythm is metastable, in that left and right heart tubes alternate between peristaltic and concerted constriction modes, with a given mode lasting for tens or hundreds of beat cycles.The constriction-dilation cycles of the segmental heart tube sections are controlled by a set of rhythmically active motor neurons, the heart excitors, or HE cells. A bilateral pair of HE cells is located in all but the two frontmost and the two rearmost segmental ganglia of the ventral nerve cord. Each HE cell innervates via excitatory synapses the circular muscle fibers in the wall of the ipsilateral heart tube section. The activity cycle of the HE cells consists of an active phase, during which they are depolarized and produce a burst of impulses, and an inactive phase during which they are repolarized by a burst of inhibitory synaptic potentials. The intersegmentally coordinated activity cycles of the HE cell set are maintained in an isolated ventral nerve cord. Hence the generation of the heart excitor rhythm does not require sensory feedback.We are indepted to Amy Kelly and King-Wai Yau for advice on the use of the intracellular staining technique and to John Kretz for calling to our attention the existence of an afferent impulse burst rhythm emanating from denervated heart tube preparations. We thank Georgia Harper for excellent technical assistance. This research was supported by Grant GB 31933X from the National Science Foundation and NIH research grants GM17866 and Training Grant GM 01389 from the Institute of General Medical Sciences.  相似文献   

17.
N J Birkett  A P Donner  M D Maynard 《CMAJ》1987,136(6):595-600
In community surveys of hypertension control the diagnosis is often based on blood pressure measurements taken on only one visit. The clinical diagnosis of hypertension requires demonstration of sustained blood pressure elevation. We conducted a survey that contrasted the results of these two approaches to determining the prevalence of hypertension and the extent to which hypertension is detected and treated. A multistage random sample of 2737 people was selected, examined and interviewed on up to three occasions. Rates of hypertension prevalence and control were computed from data from one, two and three visits. The prevalence of hypertension was overestimated by 30% when the diagnosis was based on data from one rather than three visits, the rates being 149 and 115/1000. The prevalence of undetected hypertension was overestimated by 350%, the rates being 27 and 6/1000. The proportion of subjects with controlled hypertension was underestimated by 23%, at 56%, compared with 73%. These results confirm the need for follow-up measurements to provide a valid assessment of hypertension control in the community.  相似文献   

18.
19.
All forms of pulmonary hypertension are characterized by structural changes in pulmonary arteries. Increased numbers of cells expressing alpha-smooth muscle (alpha-SM) actin is a nearly universal finding in the remodeled artery. Traditionally, it was assumed that resident smooth muscle cells were the exclusive source of these newly appearing alpha-SM actin-expressing cells. However, rapidly emerging experimental evidence suggests other, alternative cellular sources of these cells. One possibility is that endothelial cells can transition into mesenchymal cells expressing alpha-SM actin and that this process contributes to the accumulation of SM-like cells in vascular pathologies. We review the evidence that endothelial-mesenchymal transition is an important contributor to cardiac and vascular development as well as to pathophysiological vascular remodeling. Recent work has provided evidence for the role of transforming growth factor-beta, Wnt, and Notch signaling in this process. The potential roles of matrix metalloproteinases and serine proteases are also discussed. Importantly, endothelial-mesenchymal transition may be reversible. Thus insights into the mechanisms controlling endothelial-mesenchymal transition are relevant to vascular remodeling and are important as we consider new therapies aimed at reversing pulmonary vascular remodeling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号