首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.  相似文献   

2.
We compared intraoral prey transport in venomous snake species from four families (two atractaspidids, nine elapids, three colubrids, 44 viperids) with that in eight non-venomous colubrid species, most feeding on similar mammalian prey. The morphology of the venom delivery system suggests that intraoral prey transport performance should be slightly decreased in atractaspidids, unmodified in most elapids and venomous colubrids, and increased or unmodified in vipers, as compared to that in non-venomous colubrid snakes. Our measurements of relative intraoral prey transport performance show that differences among families do not match expectations based on morphology or past studies. Decreased performance in Atractaspis results from reduction and loss of teeth on the medial palatal elements and dentaries, but affects only early phases of ingestion. Although joint and bone features of elapids and colubrids are similar, intraoral prey transport performance is significantly lower in elapids than in colubrids. Predicted enhancement of intraoral prey transport performance in vipers as compared to colubrids was not borne out by measurements, presumably because palatopterygoid movement during intraoral prey transport is reduced in many viper species to limit fang erection. Absence of significant performance differences between colubrids and viperids might suggest that evolution of the viperid venom delivery system was subject to little selection pressure from intraoral prey transport. Another possibility is that there are trade-offs between intraoral prey transport and strike performance in vipers related to relative skull mass and jaw fragility. Immobilizing prey prior to intraoral transport places less demand on transport performance in vipers. In this model, the conservative kinesis and greater robustness of the colubrid palate has greater potential for transporting live prey with less risk of injury.  相似文献   

3.
The Sm binding sites of different spliceosomal U small nuclear RNAs (snRNAs), the RNA structural elements required for interaction with common snRNP proteins, have been considered to be similar or identical. Here we show that this is not the case. Instead, structural and sequence features unique to U1 or U5 snRNAs that contribute to common protein binding are identified. The determinants of Sm protein binding in both RNAs are complex, consisting in U5 of minimally two and in U1 of minimally four separate structural elements. Even the most conserved features of the two RNAs, single-stranded regions whose generalized sequence is PuA(U)nGPu, are not functionally interchangeable in protein binding. At least one of the newly defined RNA elements functions in assembly with the common proteins, but is not required for their stable binding thereafter. U1, but not U5, snRNP requires a trimethyl guanosine cap structure for its transport to the nucleus. This is not a consequence of the differences in common snRNP binding to the two RNAs, but is due to structural features of U1 RNA that do not contribute to Sm protein binding.  相似文献   

4.
Recent studies have shown that the transport of microtubules (MTs) and neurofilaments (NFs) within the axon is rapid, infrequent, asynchronous, and bidirectional. Here, we used RNA interference to investigate the role of cytoplasmic dynein in powering these transport events. To reveal transport of MTs and NFs, we expressed EGFP-tagged tubulin or NF proteins in cultured rat sympathetic neurons and performed live-cell imaging of the fluorescent cytoskeletal elements in photobleached regions of the axon. The occurrence of anterograde MT and retrograde NF movements was significantly diminished in neurons that had been depleted of dynein heavy chain, whereas the occurrence of retrograde MT and anterograde NF movements was unaffected. These results support a cargo model for NF transport and a sliding filament model for MT transport.  相似文献   

5.
We previously identified an RNA transport element (RTE), present in a subclass of rodent intracisternal A particle retroelements (F. Nappi, R. Schneider, A. Zolotukhin, S. Smulevitch, D. Michalowski, J. Bear, B. Felber, and G. Pavlakis, J. Virol. 75:4558-4569, 2001), that is able to replace Rev-responsive element regulation in human immunodeficiency virus type 1. RTE-directed mRNA export is mediated by a still-unknown cellular factor(s), is independent of the CRM1 nuclear export receptor, and is conserved among vertebrates. Here we show that this RTE folds into an extended RNA secondary structure and thus does not resemble any known RTEs. Computer searches revealed the presence of 105 identical elements and more than 3,000 related elements which share at least 70% sequence identity with the RTE and which are found on all mouse chromosomes. These related elements are predicted to fold into RTE-like structures. Comparison of the sequences and structures revealed that the RTE and related elements can be divided into four groups. Mutagenesis of the RTE revealed that the minimal element contains four internal stem-loops, which are indispensable for function in mammalian cells. In contrast, only part of the element is essential to mediate RNA transport in microinjected Xenopus laevis oocyte nuclei. Importantly, the minimal RTE able to promote RNA transport has key structural features which are preserved in all the RTE-related elements, further supporting their functional importance. Therefore, RTE function depends on a complex secondary structure that is important for the interaction with the cellular export factor(s).  相似文献   

6.
Trace elements are used by all organisms and provide proteins with unique coordination and catalytic and electron transfer properties. Although many trace element-containing proteins are well characterized, little is known about the general trends in trace element utilization. We carried out comparative genomic analyses of copper, molybdenum, nickel, cobalt (in the form of vitamin B12), and selenium (in the form of selenocysteine) in 747 sequenced organisms at the following levels: (i) transporters and transport-related proteins, (ii) cofactor biosynthesis traits, and (iii) trace element-dependent proteins. Few organisms were found to utilize all five trace elements, whereas many symbionts, parasites, and yeasts used only one or none of these elements. Investigation of metalloproteomes and selenoproteomes revealed examples of increased utilization of proteins that use copper in land plants, cobalt in Dehalococcoides and Dictyostelium, and selenium in fish and algae, whereas nematodes were found to have great diversity of copper transporters. These analyses also characterized trace element metabolism in common model organisms and suggested new model organisms for experimental studies of individual trace elements. Mismatches in the occurrence of user proteins and corresponding transport systems revealed deficiencies in our understanding of trace element biology. Biological interactions among some trace elements were observed; however, such links were limited, and trace elements generally had unique utilization patterns. Finally, environmental factors, such as oxygen requirement and habitat, correlated with the utilization of certain trace elements. These data provide insights into the general features of utilization and evolution of trace elements in the three domains of life.  相似文献   

7.
We present an overview of the research on intracellular transport in pigment cells, with emphasis on the most recent discoveries. Pigment cells of lower vertebrates have been traditionally used as a model for studies of intracellular transport mechanisms, because these cells transport pigment organelles to the center or to the periphery of the cell in a highly co-ordinated fashion. It is now well established that both aggregation and dispersion of pigment in melanophores require two elements of the cytoskeleton: microtubules and actin filaments. Melanosomes are moved along these cytoskeletal tracks by motor proteins. Recent studies have identified the motors responsible for pigment dispersion and aggregation in melanophores. We propose a model for the possible roles of the two cytoskeletal transport systems and how they might interact. We also discuss the putative mechanisms of regulation of pigment transport, especially phosphorylation. Last, we suggest areas of research that will receive attention in the future in order to elucidate the mechanisms of organelle transport.  相似文献   

8.
We present an overview of the research on intracellular transport in pigment cells, with emphasis on the most recent discoveries. Pigment cells of lower vertebrates have been traditionally used as a model for studies of intracellular transport mechanisms, because these cells transport pigment organelles to the center or to the periphery of the cell in a highly co-ordinated fashion. It is now well established that both aggregation and dispersion of pigment in melanophores require two elements of the cytoskeleton: microtubules and actin filaments. Melanosomes are moved along these cytoskeletal tracks by motor proteins. Recent studies have identified the motors responsible for pigment dispersion and aggregation in melanophores. We propose a model for the possible roles of the two cytoskeletal transport systems and how they might interact. We also discuss the putative mechanisms of regulation of pigment transport, especially phosphorylation. Last, we suggest areas of research that will receive attention in the future in order to elucidate the mechanisms of organelle transport.  相似文献   

9.
On the basis of the currently accepted model for the cell membrane structure, a physico-chemical model for mediated transport is developed and solved for the case of polar non-electrolyte migration through the cell membrane. The model considers the interstitial space defined by the transport protein subunits to be the migration pathway for polar solutes. A Langmuir-type adsorption equilibrium is assumed at the interfaces and a multicomponent diffusion mechanism of solute and water is postulated within the migration pathway, where the polar residues of the transport protein represent another component of the system. Membrane selectivity is governed by the adsorption constants, which are shown to affect strongly the kinetics of transport. Isosmotic transport and the volume change of the cell are important features incorporated in the model, which is shown to fulfill the peculiar properties of facilitated diffusion systems. It is concluded that the same type of pathway can be used for the transport of other polar solutes through existing or induced hydrophilic channels, for which a similar approach is suggested.  相似文献   

10.
An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.  相似文献   

11.
In this paper biological compartmental models are considered which take into account the intrinsic randomness of the transport rate parameters and their possible variability in time. An identification procedure is presented for the estimation of the stochastic processes representing the transport rate parameters of a compartmental model from a noisy input-output experiment. The problem is formulated in terms of nonlinear filtering. A simple model is discussed for the case in which the transport rate parameters are independent of each other. The possibility of testing possible important features of the behavior of the transport rate parameters is also evidenced.  相似文献   

12.
13.
In the developing xylem bundles of young stems, the presence of immature living vessel elements can strongly restrict or even block axial hydraulic conductance, especially in newly matured vessels. Lateral connections between vessels may provide an alternative pathway for water movement to bypass these closed, living elements. Using the grapevine as a model system, the present study aimed to demonstrate the effects of living vessel elements on water movement patterns, and the importance of lateral flow for effective water conductivity in the developing bundles. Living vessel elements were detected using dye staining and the pattern of vessel development and maturation was then monitored. The importance of lateral flow was confirmed using several approaches: (1) capacity for lateral flow, (2) effect of increasing the distance of water transport, and (3) effect of ion concentrations. Living vessel elements were found along the developing bundles, they occupied a significant proportion of the distal and peripheral parts of the flow path, forming a substantial barrier to apoplastic water flow. Water in the developing xylem bundles could move easily from vessel to vessel and between secondary and primary xylem. Furthermore, data from increasing the transport length and altering the ion concentrations supported the critical contribution of the lateral flow to the total hydraulic conductance within the developing bundles. The hydraulic architecture of the developing xylem bundles is described. The results are discussed in terms of reliability and efficiency of water transport during shoot growth and development.  相似文献   

14.
Human P-glycoprotein (ABCB1) is a primary multidrug transporter located in plasma membranes, that utilizes the energy of ATP hydrolysis to pump toxic xenobiotics out of cells. P-glycoprotein employs a most unusual molecular mechanism to perform this drug transport function. Here we review our work to elucidate the molecular mechanism of drug transport by P-glycoprotein. High level heterologous expression of human P-glycoprotein, in the yeast Saccharomyces cerevisiae, has facilitated biophysical studies in purified proteoliposome preparations. Development of novel spin-labeled transport substrates has allowed for quantitative and rigorous measurements of drug transport in real time by EPR spectroscopy. We have developed a new drug transport model of P-glycoprotein from the results of mutagenic, quantitative thermodynamic and kinetic studies. This model satisfactorily accounts for most of the unusual kinetic, coupling, and physiological features of P-glycoprotein. Additionally, an atomic detail structural model of P-glycoprotein has been devised to place our results within a proper structural context.  相似文献   

15.
16.
Insights into membrane insertion based on studies of colicins   总被引:8,自引:0,他引:8  
The recently determined three-dimensional structure of the pore-forming domain of colicin A has led to a hypothetical model for membrane insertion and channel formation. Certain features of this model have implications for understanding the mechanism of membrane insertion by other toxins and may have a broader relevance to protein transport in general.  相似文献   

17.

Background and Aims

Imperforate tracheary elements (ITEs) in wood of vessel-bearing angiosperms may or may not transport water. Despite the significance of hydraulic transport for defining ITE types, the combination of cell structure with water transport visualization in planta has received little attention. This study provides a quantitative analysis of structural features associated with the conductive vs. non-conductive nature of ITEs.

Methods

Visualization of water transport was studied in 15 angiosperm species by dye injection and cryo-scanning electron microscopy. Structural features of ITEs were examined using light and electron microscopy.

Key Results

ITEs connected to each other by pit pairs with complete pit membranes contributed to water transport, while cells showing pit membranes with perforations up to 2 µm were hydraulically not functional. A close relationship was found between pit diameter and pit density, with both characters significantly higher in conductive than in non-conductive cells. In species with both conductive and non-conductive ITEs, a larger diameter was characteristic of the conductive cells. Water transport showed no apparent relationship with the length of ITEs and vessel grouping.

Conclusions

The structure and density of pits between ITEs represent the main anatomical characters determining water transport. The pit membrane structure of ITEs provides a reliable, but practically challenging, criterion to determine their conductive status. It is suggested that the term tracheids should strictly be used for conductive ITEs, while fibre-tracheids and libriform fibres are non-conductive.  相似文献   

18.
19.
MURPHY  RICARDO 《Annals of botany》1989,63(5):541-549
A mathematical model of water and sucrose transport across thesieve tube boundary is presented, based on conservation of matterand the phenomenological equations for plasmodesmatal transportbetween the sieve elements and their associated cells. Plasmodesmataltransport coefficients are discussed. In parts II–IV,the equations developed here are used to assess: (i) the estimationof phloem turgor gradients from osmotic pressure gradients;(ii) plasmodesmatal transport of water and sucrose between thesieve elements and adjacent cells; and (iii) the plausibilityof symplastic and apoplastic phloem loading and unloading insome primary sources and sinks. A list of symbols is given inAppendix 1 of this paper Phloem, turgor, osmotic pressure, loading, unloading, plasmodesmata, Munch hypothesis  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号