首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vivo activity of the alternative pathway (ν(alt)) has been studied using the oxygen isotope fractionation method in leaves of Arabidopsis thaliana modified for the expression of the AtAOX1a gene by anti-sense (AS-12) or overexpression (XX-2). Under non-stressful conditions, ν(alt) was similar in all plant lines regardless of its different alternative pathway capacities (V(alt)). Total leaf respiration (V(t)) and V(alt) were directly related to growth light conditions while electron partitioning between the cytochrome pathway (CP) and alternative pathway (AP) was unchanged by light levels. Interestingly, the AP functioned at full capacity in anti-sense plants under both growth light conditions. The role of the AP in response to a high light stress induced by short-term high light treatment (HLT) was also studied. In wild type and XX-2, both CP and AP rates increased proportionally after HLT while in AS-12, where the AP was unable to increase its rate, the CP accommodated all the increase in respiration. The results obtained under high light stress suggest that flexibility in the response of the mitochondrial electron transport chain is involved in sustaining photosynthetic rates in response to this stress while the saturated AP in AS-12 plants may contribute to the observed increase in photoinhibition.  相似文献   

2.
The contribution of the cyanide-resistant, alternative pathway to plant mitochondrial electron transport has been studied using a modified aqueous phase on-line mass spectrometry-gas chromatography system. This technique permits direct measurement of the partitioning of electrons between the cytochrome and alternative pathways in the absence of added inhibitors. We demonstrate that in mitochondria isolated from soybean (Glycine max L. cv Ransom) cotyledons, the alternative pathway contributes significantly to oxygen uptake under state 4 conditions, when succinate is used as a substrate. However, when NADH is the substrate, addition of pyruvate, an allosteric activator of the alternative pathway, is required to achieve the same level of alternative pathway activity. Under state 3 conditions, when the reduction state of the ubiquinone pool is low, the addition of pyruvate allows the alternative pathway to compete with the cytochrome pathway for electrons from the ubiquinone pool when the cytochrome pathway is not saturated. These results provide direct experimental verification of the kinetics consequences of pyruvate addition on the partitioning of electron flow between the two respiratory pathways. This distribution of electrons between the two unsaturated pathways could not be measured using conventional oxygen electrode methods and illustrates a clear advantage of the mass spectrometry technique. These results have significant ramifications for studies of plant respiration using the oxygen electrode, particularly those studies involving intact tissues.  相似文献   

3.
Effects of water stress on respiration in soybean leaves   总被引:2,自引:0,他引:2       下载免费PDF全文
The effect of water stress on respiration and mitochondrial electron transport has been studied in soybean (Glycine max) leaves, using the oxygen-isotope-fractionation technique. Treatments with three levels of water stress were applied by irrigation to replace 100%, 50%, and 0% of daily water use by transpiration. The levels of water stress were characterized in terms of light-saturated stomatal conductance (g(s)): well irrigated (g(s) > 0.2 mol H(2)O m(-2) s(-1)), mildly water stressed (g(s) between 0.1 and 0.2 mol H(2)O m(-2) s(-1)), and severely water stressed (g(s) < 0.1 mol H(2)O m(-2) s(-1)). Although net photosynthesis decreased by 40% and 70% under mild and severe water stress, respectively, the total respiratory oxygen uptake (V(t)) was not significantly different at any water-stress level. However, severe water stress caused a significant shift of electrons from the cytochrome to the alternative pathway. The electron partitioning through the alternative pathway increased from 10% to 12% under well-watered or mild water-stress conditions to near 40% under severe water stress. Consequently, the calculated rate of mitochondrial ATP synthesis decreased by 32% under severe water stress. Unlike many other stresses, water stress did not affect the levels of mitochondrial alternative oxidase protein. This suggests a biochemical regulation (other than protein synthesis) that causes this mitochondrial electron shift.  相似文献   

4.
The alternative oxidase (AOX) of plant mitochondria is encoded by the nuclear gene Aox1. Sense and antisense DNA constructs of Nicotiana tabacum Aox1 were introduced into tobacco, and transgenic plants with both increased and decreased levels of mitochondrial AOX protein were identified. Suspension cells derived from wild-type and transgenic plants were grown in heterotrophic batch culture. Transgenic cells with increased AOX protein had an increased capacity for cyanide-resistant, salicylhydroxamic acid-sensitive respiration compared to wild-type cells, whereas transgenic cells with decreased AOX protein had a decreased capacity for such respiration. Thus, genetic alteration of the level of AOX protein was sufficient to alter the capacity for electron transport through the alternative pathway. Under our standard growth conditions, "antisense" cells with dramatically reduced levels of AOX protein had growth and respiration rates similar to the wild type. However, whereas wild-type cells were able to grow under conditions that severely suppressed cytochrome pathway activity, antisense cells could not survive this treatment. This suggests that a critical function of AOX may be to support respiration when the cytochrome pathway is impaired. The much higher level of AOX protein in "sense" cells compared to the wild type did not appreciably alter the steady-state partitioning of electrons between the cytochrome path and the alternative pathway in vivo, suggesting that this partitioning may be subject to additional regulatory factors.  相似文献   

5.
The inhibitor propyl gallate was used to estimate partitioning of respiratory electron flow between the cytochrome amd alternative pathways in Chlamydomonas reinhardtii Dangeard. Nutrient limitation (nitrogen or phosphorus resulted in a large increase in alternative pathway capacity relative to cytochrome pathway activity, without regulating in engagement of the alternative pathway. High rates of respiration, which could be induced in phosphate-starved cells by a combination of phosphate addition and uncoupler, resulted in alternative pathway activity. Osmotic stress resulted in decreased electron flow through the cytochrome pathway and increased flow through the alternative pathway, while high temperature also resulted in alternative pathway engagement. Incubation with exogenous carbon sources could increase the rate of respiratory O2 consumption; the increase was mediated entirely by the alternative pathway. We suggest that the alternative pathway functions in these cells both to maintain respiration during environmentally induced stress and as on energy overflow.  相似文献   

6.
Chilling effects on respiration during the recovery period were studied in two maize (Zea mays L.) cultivars differing in their tolerance to chilling: Penjalinan, a chilling-sensitive cultivar, and Z7, a chilling-tolerant cultivar. Both cultivars were exposed to 5 degrees C for 5 d, after which measurements were taken at 25 degrees C. Chlorophyll fluorescence analysis in dark-adapted leaves showed less damage in cv Z7 than in cv Penjalinan during recovery from the chilling treatment. Studies of the electron partitioning between the cytochrome and the alternative respiratory pathways during chilling recovery using the oxygen isotope fractionation technique showed that, although total leaf respiration was not affected by the chilling treatment in either of the two cultivars, electron partitioning to the alternative pathway was significantly increased in the more stressed chilling-sensitive cv Penjalinan, suggesting that increased activity of the alternative pathway is not related to the plant tolerance to chilling. These results suggest a possible role of the alternative pathway in plants under stress rather than specifically contributing to plant resistance to chilling.  相似文献   

7.
The expression of genes encoding various enzymes participating in photosynthetic and respiratory metabolism is regulated by light via the phytochrome system. While many photosynthetic, photorespiratory and some respiratory enzymes, such as the rotenone‐insensitive NADH and NADPH dehydrogenases and the alternative oxidase, are stimulated by light, succinate dehydrogenase, subunits of the pyruvate dehydrogenase complex, cytochrome oxidase and fumarase are inhibited via the phytochrome mechanism. The effect of light, therefore, imposes limitations on the tricarboxylic acid cycle and on the mitochondrial electron transport coupled to ATP synthesis, while the non‐coupled pathways become activated. Phytochrome‐mediated regulation of gene expression also creates characteristic distribution patterns of photosynthetic, photorespiratory and respiratory enzymes across the leaf generating different populations of mitochondria, either enriched by glycine decarboxylase (in the upper part) or by succinate dehydrogenase (in the bottom part of the leaf).  相似文献   

8.
Plant mitochondria differ from those of mammals, since they incorporate an alternative electron transport pathway, which branches at ubiquinol to an alternative oxidase (AOX), characteristically inhibited by salicylhydroxamic acid (SHAM). Another feature of plant mitochondria is that besides complex I (EC 1.6.5.3) they possess alternative NAD(P)H-dehydrogenases insensitive to rotenone. Many stress conditions are known to alter the expression of the alternative electron transport pathway in plant mitochondria. In the present study we investigated the effects of some thiol reagents and Ca(2+) on potato mitochondrial respiratory chain presenting different activities of the alternative respiratory components AOX and external NADH dehydrogenase, a condition induced by previous treatment of potato tubers (Solanum tuberosum L., cv. Bintje) to cold stress. The results showed that Ca(2+) presented an inhibitory effect on AOX pathway in potato mitochondria energized with NADH or succinate, which was only now observed when the cytochrome pathway was inhibited by cyanide. When the cytochrome pathway was functional, Ca(2+) stimulated the external NADH dehydrogenase. Diamide was a potent AOX inhibitor and this effect was only now observed when the cytochrome pathway was inactive, as was the case for the calcium ion. Mersalyl inhibited the externally located NADH dehydrogenase and had no effect on AOX activity. The results may represent an important function of Ca(2+) on the alternative mitochondrial enzymes NADH-DH(ext) and AOX.  相似文献   

9.
Previous studies have demonstrated that the mitochondrial respiratory chain and cytochrome c oxidase participate in oxygen sensing and the induction of some hypoxic nuclear genes in eukaryotes. In addition, it has been proposed that mitochondrially-generated reactive oxygen and nitrogen species function as signals in a signaling pathway for the induction of hypoxic genes. To gain insight concerning this pathway, we have looked at changes in the functionality of the yeast respiratory chain as cells experience a shift from normoxia to anoxia. These studies have revealed that yeast cells retain the ability to respire at normoxic levels for up to 4 h after a shift and that the mitochondrial cytochrome levels drop rapidly to 30--50% of their normoxic levels and the turnover rate of cytochrome c oxidase (COX) increases during this shift. The increase in COX turnover rate cannot be explained by replacing the aerobic isoform, Va, of cytochrome c oxidase subunit V with the more active hypoxic isoform, Vb. We have also found that mitochondria retain the ability to respire, albeit at reduced levels, in anoxic cells, indicating that yeast cells maintain a functional mitochondrial respiratory chain in the absence of oxygen. This raises the intriguing possibility that the mitochondrial respiratory chain has a previously unexplored role in anoxic cells and may function with an alternative electron acceptor when oxygen is unavailable.  相似文献   

10.
The Kok effect refers to the progressive light-induced inhibition of dark respiration at low light intensities, which saturates around the light compensation point. This appears as a sudden break around the light compensation point in the plot of photosynthesis versus light intensity. The magnitude of the break can be considered as a measure of the Kok effect. In the present work, the importance of different components of dark respiration during the Kok effect was investigated by using low concentrations of mitochondrial inhibitors in leaf discs of pea ( Pisum sativum L. cv. Azad P1). The effects of glucose (stimulates respiration) and 0.8 M sorbitol (imposes osmotic stress and inhibits photosynthesis) were also studied for comparison. The magnitude of the break decreased significantly in the presence of antimycin A or oligomycin (inhibitors of cytochrome pathway of mitochondrial electron transport and ATP synthase, respectively). In contrast, there was no significant change with salicylhydroxamic acid (SHAM; an inhibitor of alternative pathway of mitochondrial electron transport). The magnitude of the break increased significantly with glucose, and decreased on exposure to osmotic stress. Our results suggest that the Kok effect (inhibition of dark respiration in light) is modulated by inhibitors of cytochrome pathway and ATP synthesis, but not that of the alternative pathway.  相似文献   

11.
Light effects on electron flow through the cyanide-resistant respiratory pathway, oxygen isotope fractionation and total respiration were studied in soybean (Glycine max L.) cotyledons. During the first 12 h of illumination there was an increase in both electron partitioning through the alternative pathway and oxygen isotope fractionation by the alternative oxidase. The latter probably indicates a change in the properties of the alternative oxidase. There was no engagement of the alternative oxidase in darkness and its fractionation was 27‰. In green cotyledons 60% of the respiration flux was through the alternative pathway and the alternative oxidase fractionation was 32‰. Exposing previously illuminated tissue to continuous darkness induced a decrease in the electron partitioning through the alternative pathway. However, this decrease was not directly linked with the low cellular sugar concentration resulting from the lack of light because 5 min of light every 12 h was sufficient to keep the alternative pathway engaged to the same extent as plants grown under control conditions.  相似文献   

12.
Phospholipase D (PLD) activity was found to be higher in etiolated oat seedlings than in green seedlings. White and red (R) light exposure inhibited PLD activity in etiolated seedlings. Far-red light eliminated R-light-induced decrease in PLD activity, indicating phytochrome participation in observed photomodulation. Inhibitor of electron transport in chloroplast 3-(3,4-dichlorophenyl)-1,1-dimethylurea stimulated and glucose suppressed PLD activity in green and etiolated oat seedlings, respectively. These results suggest that PLD activity in oat seedling is regulated by light with involvement of phytochrome photoreceptor, and associated with photosynthesis process.  相似文献   

13.
? We report the first investigation of changes in electron partitioning via the alternative respiratory pathway (AP) and alternative oxidase (AOX) protein abundance in field-grown plants and their role in seasonal acclimation of respiration. ? We sampled two alpine grasses native to New Zealand, Chionochloa rubra and Chionochloa pallens, from field sites of different altitudes, over 1 yr and also intensively over a 2-wk period. ? In both species, respiration acclimated to seasonal changes in temperature through changes in basal capacity (R??) but not temperature sensitivity (E?). In C. pallens, acclimation of respiration may be associated with a higher AOX : cytochrome c oxidase (COX) protein abundance ratio. Oxygen isotope discrimination (D), which reflects relative changes in AP electron partitioning, correlated positively with daily integrated photosynthetically active radiation (PAR) in both species over seasonal timescales. Respiratory parameters, the AOX : COX protein ratio and D were stable over a 2-wk period, during which significant temperature changes were experienced in the field. ? We conclude that respiration in Chionochloa spp. acclimates strongly to seasonal, but not to short-term, temperature variation. Alternative oxidase appears to be involved in the plant response to both seasonal changes in temperature and daily changes in light, highlighting the complexity of the function of AOX in the field.  相似文献   

14.
Alternative oxidase (AOX) functions in stress resistance by preventing accumulation of reactive oxygen species (ROS), but little is known about in vivo partitioning of electron flow between AOX and the cytochrome pathway. We investigated the relationships between AOX expression and in vivo activity in Nicotiana sylvestris and the complex I-deficient CMSII mutant in response to a cell death elicitor. While a specific AOX1 isoform in the active reduced state was constitutively overexpressed in CMSII, partitioning through the alternative pathway was similar to the wild type. Lack of correlation between AOX content and activity indicates severe metabolic constraints in nonstressed mutant leaves. The bacterial elicitor harpin N(Ea) induced similar timing and extent of cell death and a twofold respiratory burst in both genotypes with little change in AOX amounts. However, partitioning to AOX was increased twofold in the wild type but remained unchanged in CMSII. Oxidative phosphorylation modeling indicated a twofold ATP increase in both genotypes. By contrast, mitochondrial superoxide dismutase activity and reduced forms of ascorbate and glutathione were higher in CMSII than in the wild type. These results demonstrate genetically programmed flexibility of plant respiratory routes and antioxidants in response to elicitors and suggest that sustained ATP production, rather than AOX activity by itself or mitochondrial ROS, might be important for in planta cell death.  相似文献   

15.
Pamela S. David 《BBA》2005,1709(2):169-180
Previous studies have demonstrated that the mitochondrial respiratory chain and cytochrome c oxidase participate in oxygen sensing and the induction of some hypoxic nuclear genes in eukaryotes. In addition, it has been proposed that mitochondrially-generated reactive oxygen and nitrogen species function as signals in a signaling pathway for the induction of hypoxic genes. To gain insight concerning this pathway, we have looked at changes in the functionality of the yeast respiratory chain as cells experience a shift from normoxia to anoxia. These studies have revealed that yeast cells retain the ability to respire at normoxic levels for up to 4 h after a shift and that the mitochondrial cytochrome levels drop rapidly to 30-50% of their normoxic levels and the turnover rate of cytochrome c oxidase (COX) increases during this shift. The increase in COX turnover rate cannot be explained by replacing the aerobic isoform, Va, of cytochrome c oxidase subunit V with the more active hypoxic isoform, Vb. We have also found that mitochondria retain the ability to respire, albeit at reduced levels, in anoxic cells, indicating that yeast cells maintain a functional mitochondrial respiratory chain in the absence of oxygen. This raises the intriguing possibility that the mitochondrial respiratory chain has a previously unexplored role in anoxic cells and may function with an alternative electron acceptor when oxygen is unavailable.  相似文献   

16.
Fungi sense light of different wavelengths using blue-, green-, and red-light photoreceptors. Blue light sensing requires the “white-collar” proteins with flavin as chromophore, and red light is sensed through phytochrome. Here we analyzed genome-wide gene expression changes caused by short-term, low-light intensity illumination with blue-, red- or far-red light in Aspergillus nidulans and found that more than 1100 genes were differentially regulated. The largest number of up- and downregulated genes depended on the phytochrome FphA and the attached HOG pathway. FphA and the white-collar orthologue LreA fulfill activating but also repressing functions under all light conditions and both appear to have roles in the dark. Additionally, we found about 100 genes, which are red-light induced in the absence of phytochrome, suggesting alternative red-light sensing systems. We also found blue-light induced genes in the absence of the blue-light receptor LreA. We present evidence that cryptochrome may be part of this regulatory cue, but that phytochrome is essential for the response. In addition to in vivo data showing that FphA is involved in blue-light sensing, we performed spectroscopy of purified phytochrome and show that it responds indeed to blue light.  相似文献   

17.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

18.
Total cAMP levels were measured in the macroalgae Dictyota dichotoma, Gelidium sesquipedale and Ulva rigida under different light conditions in order to study its regulation either by phytochrome or photosynthesis. Incubation in red or far-red light did not promote a phytochrome-like response; instead, it showed a synergistic effect upon cAMP accumulation. cAMP levels seemed to depend on the amount of energy applied. The correlation between photosynthetic oxygen evolution and cAMP variations at sub-saturating white light irradiance pointed to photosynthetic electron transport as involved in the regulation of cAMP accumulation at least in G. sesquipedale and U. rigida. Inhibitors of thylakoidal and mitochondrial electron transport chains reduced cAMP levels in 70 to 99%. We conclude that cAMP accumulation could be regulated by photosynthetic activity rather than phytochrome in the macroalgae studied.  相似文献   

19.
Measurements of respiration were made on intact tissue and mitochondria isolated from soybean (Glycine max [L.] Merr. cv `Corsoy') cotyledons from seedlings of different ages grown in light and darkness. Effects of cyanide (KCN) and salicylhydroxamic acid (SHAM) on O2 uptake rates were determined. O2 uptake was faster in light-grown tissue and was inhibited by both KCN and SHAM in all except light-grown tissue older than 9 days. Both inhibitors stimulated O2 uptake in tissues more than 9 days old. Mitochondria in which O2 uptake was coupled to ATP synthesis were isolated from all tissues. O2 uptake by mitochondrial preparations from light- and dark-grown cotyledons was equally sensitive to KCN. Similarly, age did not affect KCN sensitivity, but sensitivity to SHAM declined with age both in the presence and absence of KCN. Estimated capacities of the cytochrome and alternative pathways of the mitochondrial preparations indicated considerably larger cytochrome than alternative pathway capacities. The cytochrome pathway capacities paralleled the state 3 mitochondrial respiration rates, which increased from day 5 to day 7 then declined thereafter. The alternative pathway capacities were not affected by light. The uncoupler, p-trifluoromethoxycarbonylcyanide phenylhydrazone (FCCP), increased the flow of electrons through the cytochrome pathway at the expense of flow through the alternative pathway in isolated mitochondria. However, the combined capacities did not exceed the rate in the presence of FCCP. The results are interpreted to indicate that the stimulation of respiration by KCN and SHAM observed in the 12-day-old green cotyledons and previously observed in older soybean leaves is not explained by characteristics of the mitochondria.  相似文献   

20.
Mass spectrometric analysis of gas exchange in light and dark by N-limited cells of Chlamydomonas reinhardtii indicated that ammonium assimilation was accompanied by an increase in respiratory carbon flow to provide carbon skeletons for amino acid synthesis. Tricarboxylic acid (TCA) cycle carbon flow was maintained by the oxidation of TCA cycle reductant via the mitochondrial electron transport chain. In wild-type cells, inhibitor studies and 18O2 discrimination experiments indicated that respiratory electron flow was mediated entirely via the cytochrome pathway in both the light and dark, despite a large capacity for the alternative pathway. In a cytochrome oxidase deficient mutant, or in wild-type cells in the presence of cyanide, the alternative pathway could support the increase in TCA cycle carbon flow. These different mechanisms of oxidation of TCA cycle reductant were reflected by the much greater SHAM sensitivity of ammonium assimilation by cytochrome oxidase-deficient cells as compared to wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号