首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiamine monophosphatase (TMPase, also known as Fluoride-resistant acid phosphatase or FRAP) is a classic histochemical marker of small- to medium-diameter dorsal root ganglia (DRG) neurons and has primarily been studied in the rat. Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice. In addition, PAP was expressed in a majority of nonpeptidergic, isolectin B4-binding (IB4+) nociceptive neurons and a subset of peptidergic, calcitonin gene-related peptide-containing (CGRP+) nociceptive neurons. At the time, we were unable to determine if PAP was present in rat DRG neurons because the antibody we used did not cross-react with PAP in rat tissues. In our present study, we generated a chicken polyclonal antibody against the secretory isoform of mouse PAP. This antibody detects mouse, rat and human PAP protein on western blots. Additionally, this antibody detects PAP in mouse and rat small- to medium-diameter DRG neurons and axon terminals in lamina II of spinal cord. In the rat, 92.5% of all PAP+ cells bind the nonpeptidergic marker IB4 and 31.8% of all PAP+ cells contain the peptidergic marker CGRP. Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species. Moreover, PAP+ axon terminals in the rat partially overlap with Protein kinase Cγ (PKCγ+) interneurons in dorsal spinal cord whereas PAP+ axon terminals in the mouse terminate dorsal to PKCγ+ interneurons. Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.  相似文献   

2.
Disturbances in the circadian pacemaker system are commonly found in individuals with depression and sleep-related problems. We hypothesized that some of the canonical circadian clock genes would be associated with depression accompanied by signs of disturbed sleep, early morning awakening, or daytime fatigue. We tested this hypothesis in a population-based sample of the Health 2000 dataset from Finland, including 384 depressed individuals and 1270 controls, all with detailed information on sleep and daytime vigilance, and analyzed this set of individuals with regard to 113 single-nucleotide polymorphisms of 18 genes of the circadian system. We found significant association between TIMELESS variants and depression with fatigue (D+FAT+) (rs7486220: pointwise P = 0.000099, OR = 1.66; corrected empirical P for the model of D+FAT+  = 0.0056; haplotype ‘C-A-A-C’ of rs2291739-rs2291738-rs7486220-rs1082214: P = 0.0000075, OR = 1.72) in females, and association to depression with early morning awakening (D+EMA+) (rs1082214: pointwise P = 0.0009, OR = 2.70; corrected empirical P = 0.0374 for the model D+EMA+; haplotype ‘G-T’ of rs7486220 and rs1082214: P = 0.0001, OR = 3.01) in males. There was significant interaction of gender and TIMELESS (for example with rs1082214, P = 0.000023 to D+EMA+ and P = 0.005 to D+FAT+). We obtained supported evidence for involvement of TIMELESS in sleeping problems in an independent set of control individuals with seasonal changes in mood, sleep duration, energy level and social activity in females (P = 0.036, ® = 0.123 for rs1082214) and with early morning awakening or fatigue in males (P = 0.038 and P = 0.0016, respectively, for rs1082214). There was also some evidence of interaction between TIMELESS and PER1 in females to D+FAT+ as well as between TIMELESS and ARNTL, RORA or NR1D1 in males to D+EMA+. These findings support a connection between circadian genes and gender-dependent depression and defective sleep regulation.  相似文献   

3.
Deoxyribozymes that recode sequence information   总被引:1,自引:0,他引:1  
Allosteric nucleic acid ligases have been used previously to transform analyte-binding into the formation of oligonucleotide templates that can be amplified and detected. We have engineered binary deoxyribozyme ligases whose two components are brought together by bridging oligonucleotide effectors. The engineered ligases can ‘read’ one sequence and then ‘write’ (by ligation) a separate, distinct sequence, which can in turn be uniquely amplified. The binary deoxyribozymes show great specificity, can discriminate against a small number of mutations in the effector, and can read and recode DNA information with high fidelity even in the presence of excess obscuring genomic DNA. In addition, the binary deoxyribozymes can read non-natural nucleotides and write natural sequence information. The binary deoxyribozyme ligases could potentially be used in a variety of applications, including the detection of single nucleotide polymorphisms in genomic DNA or the identification of short nucleic acids such as microRNAs.  相似文献   

4.
Liu Q  Sommer SS 《BioTechniques》2004,36(1):156-166
Pyrophosphorolysis-activated polymerization (PAP) was developed to detect extremely rare mutations in complex genomes. In theory, PAP can detect a copy of a single base mutation present in 3 x 10(11) copies of the wild-type allele. In practice, the selectivity of detection is limited by a bypass reaction involving a polymerase extension error from the unblocked oligonucleotide annealed to the opposing strand. Bidirectional PAP allele-specific amplification (Bi-PAP-A) is a novel method that uses two opposing 3'-terminal blocked pyrophosphorolysis-activatable oligonucleotides (P*s) with one nucleotide overlap at their 3' termini. This eliminates the problematic bypass reaction. The selectivity of Bi-PAP-A was examined using lambda phage DNA as a model system. Bi-PAP-A selectively detected two copies of a rare mutated allele in the presence of at least 2 x 10(9) copies of the wild-type lambda phage DNA. Bi-PAP-A was then applied to direct detection of spontaneous somatic mutations in the mouse genome at a frequency as low as 3 x 10(-9). A 370-fold variation in the frequency of a specific somatic mutation among different mouse samples was found, suggesting clonal expansion of mutation occurring during early development and a hyper-Poisson variance. Bi-PAP-A is a rapid, general, and automatable method for the detection of rare mutations.  相似文献   

5.
Showing a high sequence similarity, the evolutionary closely related bacterial poly(A) polymerases (PAP) and CCA-adding enzymes catalyze quite different reactions—PAP adds poly(A) tails to RNA 3′-ends, while CCA-adding enzymes synthesize the sequence CCA at the 3′-terminus of tRNAs. Here, two highly conserved structural elements of the corresponding Escherichia coli enzymes were characterized. The first element is a set of amino acids that was identified in CCA-adding enzymes as a template region determining the enzymes' specificity for CTP and ATP. The same element is also present in PAP, where it confers ATP specificity. The second investigated region corresponds to a flexible loop in CCA-adding enzymes and is involved in the incorporation of the terminal A-residue. Although, PAP seems to carry a similar flexible region, the functional relevance of this element in PAP is not known. The presented results show that the template region has an essential function in both enzymes, while the second element is surprisingly dispensable in PAP. The data support the idea that the bacterial PAP descends from CCA-adding enzymes and still carries some of the structural elements required for CCA-addition as an evolutionary relic and is now fixed in a conformation specific for A-addition.  相似文献   

6.
We tested the hypothesis that therapeutic vaccination against HIV-1 can increase the frequency and suppressive function of regulatory, CD4+ T cells (Treg), thereby masking enhancement of HIV-1-specific CD8+ T cell response. HIV-1-infected subjects on antiretroviral therapy (N = 17) enrolled in a phase I therapeutic vaccine trial received 2 doses of autologous dendritic cells (DC) loaded with HIV-1 peptides. The frequency of CD4+CD25hiFOXP3+ Treg in blood was determined prior to and after vaccination in subjects and normal controls. Polyfunctional CD8+ T cell responses were determined pre- and post-vaccine (N = 7) for 5 immune mediators after in vitro stimulation with Gag peptide, staphylococcal enterotoxin B (SEB), or medium alone. Total vaccine response (post-vaccine–pre-vaccine) was compared in the Treg(+) and Treg-depleted (Treg-) sets. After vaccination, 12/17 subjects showed a trend of increased Treg frequency (P = 0.06) from 0.74% to 1.2%. The increased frequency did not correlate with CD8+ T cell vaccine response by enzyme linked immunosorbent assay for interferon γ production. Although there was no significant change in CD8+ T cell polyfunctional response after vaccination, Treg depletion increased the polyfunctionality of the total vaccine response (P = 0.029), with a >2-fold increase in the percentage of CD8+ T cells producing multiple immune mediators. In contrast, depletion of Treg did not enhance polyfunctional T cell response to SEB, implying specificity of suppression to HIV-1 Gag. Therapeutic immunization with a DC-based vaccine against HIV-1 caused a modest increase in Treg frequency and a significant increase in HIV-1-specific, Treg suppressive function. The Treg suppressive effect masked an increase in the vaccine-induced anti-HIV-1-specific polyfunctional response. The role of Treg should be considered in immunotherapeutic trials of HIV-1 infection.  相似文献   

7.
MODS is a novel liquid culture based technique that has been shown to be effective and rapid for early diagnosis of tuberculosis (TB). We evaluated the MODS assay for diagnosis of TB in children in Viet Nam. 217 consecutive samples including sputum (n = 132), gastric fluid (n = 50), CSF (n = 32) and pleural fluid (n = 3) collected from 96 children with suspected TB, were tested by smear, MODS and MGIT. When test results were aggregated by patient, the sensitivity and specificity of smear, MGIT and MODS against “clinical diagnosis” (confirmed and probable groups) as the gold standard were 28.2% and 100%, 42.3% and 100%, 39.7% and 94.4%, respectively. The sensitivity of MGIT and MODS was not significantly different in this analysis (P = 0.5), but MGIT was more sensitive than MODS when analysed on the sample level using a marginal model (P = 0.03). The median time to detection of MODS and MGIT were 8 days and 13 days, respectively, and the time to detection was significantly shorter for MODS in samples where both tests were positive (P<0.001). An analysis of time-dependent sensitivity showed that the detection rates were significantly higher for MODS than for MGIT by day 7 or day 14 (P<0.001 and P = 0.04), respectively. MODS is a rapid and sensitive alternative method for the isolation of M.tuberculosis from children.  相似文献   

8.
Direct sequencing remains the most widely used method for the detection of epidermal growth factor receptor (EGFR) mutations in lung cancer; however, its relatively low sensitivity limits its clinical use. The objective of this study was to investigate the sensitivity of detecting an epidermal growth factor receptor (EGFR) mutation from peptide nucleic acid-locked nucleic acid polymerase chain reaction (PNA-LNA PCR) clamp and Ion Torrent Personal Genome Machine (PGM) techniques compared to that by direct sequencing. Furthermore, the predictive efficacy of EGFR mutations detected by PNA-LNA PCR clamp was evaluated. EGFR mutational status was assessed by direct sequencing, PNA-LNA PCR clamp, and Ion Torrent PGM in 57 patients with non-small cell lung cancer (NSCLC). We evaluated the predictive efficacy of PNA-LNA PCR clamp on the EGFR-TKI treatment in 36 patients with advanced NSCLC retrospectively. Compared to direct sequencing (16/57, 28.1%), PNA-LNA PCR clamp (27/57, 47.4%) and Ion Torrent PGM (26/57, 45.6%) detected more EGFR mutations. EGFR mutant patients had significantly longer progressive free survival (14.31 vs. 21.61 months, P = 0.003) than that of EGFR wild patients when tested with PNA-LNA PCR clamp. However, no difference in response rate to EGFR TKIs (75.0% vs. 82.4%, P = 0.195) or overall survival (34.39 vs. 44.10 months, P = 0.422) was observed between the EGFR mutations by direct sequencing or PNA-LNA PCR clamp. Our results demonstrate firstly that patients with EGFR mutations were detected more frequently by PNA-LNA PCR clamp and Ion Torrent PGM than those by direct sequencing. EGFR mutations detected by PNA-LNA PCR clamp may be as a predicative factor for EGFR TKI response in patients with NSCLC.  相似文献   

9.
We report the development of a qualitative fluorescent multiplex homogeneous assay designed for the detection of the two most common hemochromatosis mutations using dual-labeled fluorescent probes. The assay is able to detect four allelic variants in a single closed tube using a single thermocycling protocol. The procedure combines the great sensitivity of the polymerase chain reaction, the specificity provided by allele-specific oligonucleotide hybridization using the 5(') nuclease assay format, and the higher throughput of a multicolor fluorescence detection procedure. Genomic DNA was prepared from whole blood specimens using standard procedures. Following DNA sample preparation, two regions of the hemochromatosis gene (HFE) including the H63D and C282Y mutations were coamplified and detected in real-time by four different fluorescently labeled allele-specific oligonucleotide probes. Assay specificity was demonstrated by a blind methods comparison study that included 37 DNA samples from individuals with a known HFE genotype. Results from the study showed that the multicolor multiplex HFE assay unambiguously classified all possible genotypes for the HFE gene C282Y and H63D mutations(1). This technique will be useful for research and molecular diagnostic laboratories and can be easily adapted for the detection of other single nucleotide polymorphisms.  相似文献   

10.
A novel endonuclease IV post-PCR genotyping system   总被引:1,自引:0,他引:1  
Here we describe a novel endonuclease IV (Endo IV) based assay utilizing a substrate that mimics the abasic lesions that normally occur in double-stranded DNA. The three component substrate is characterized by single-stranded DNA target, an oligonucleotide probe, separated from a helper oligonucleotide by a one base gap. The oligonucleotide probe contains a non-fluorescent quencher at the 5′ end and fluorophore attached to the 3′ end through a special rigid linker. Fluorescence of the oligonucleotide probe is efficiently quenched by the interaction of terminal dye and quencher when not hybridized. Upon hybridization of the oligonucleotide probe and helper probe to their complementary target, the phosphodiester linkage between the rigid linker and the 3′ end of the probe is efficiently cleaved, generating a fluorescent signal. In this study, the use of the Endo IV assay as a post-PCR amplification detection system is demonstrated. High sensitivity and specificity are illustrated using single nucleotide polymorphism detection.  相似文献   

11.
Binding constants for triplex formation between purine-rich oligonucleotides and a pyrimidine·purine tract of the human c-src proto-oncogene were measured by fluorescence polarization in the presence of polyamines, Na+ and K+. In both the hexamine and tetramine series, the longer polyamines had the larger binding constants for triplex formation at low concentrations of polyamine. At higher concentrations all values tended to plateau in the 109/M range. In contrast to previous reports, K+ did not inhibit triplex formation and at 150 mM the binding constants were again in the 109/M range for both an 11mer and 22mer oligonucleotide. At 150 mM K+ the addition of polyamines did not lead to any significant increase in the binding constants. It was determined that the lack of inhibition by K+ was due to the low concentration (1 nM) of purine oligonucleotide required for the fluorescence polarization technique. At higher concentrations (1 µM) self-association of the oligonucleotide was observed. These results suggest that in vivo, at least for the c-src promoter, the inhibition of triplex formation by K+ may not be detrimental. However, it may be difficult to achieve binding constants above ~109/M even in the presence of polycations.  相似文献   

12.
A monoclonal antibody-based sandwich direct ELISA (MSD-ELISA) method was previously developed for foot-and-mouth disease (FMD) viral antigen detection. Here we evaluated the sensitivity and specificity of two FMD viral antigen detection MSD-ELISAs and compared them with conventional indirect sandwich (IS)-ELISA. The MSD-ELISAs were able to detect the antigen in saliva samples of experimentally-infected pigs for a longer term compared to the IS-ELISA. We also used 178 RT-PCR-positive field samples from cattle and pigs affected by the 2010 type-O FMD outbreak in Japan, and we found that the sensitivities of both MSD-ELISAs were about 7 times higher than that of the IS-ELISA against each sample (P<0.01). In terms of the FMD-positive farm detection rate, the sensitivities of the MSD-ELISAs were about 6 times higher than that of the IS-ELISA against each farm (P<0.01). Although it is necessary to conduct further validation study using the other virus strains, MSD-ELISAs could be appropriate as a method to replace IS-ELISA for FMD antigen detection.  相似文献   

13.
We retrospectively investigated the imaging findings of bone scintigraphy, chest CT and chest MRI in 55 cases of lung cancer. The sensitivity, specificity and accuracy of the detection of rib metastases were compared between imaging modalities on both a per-lesion and a per-patient basis. On a per-lesion basis, MRI sensitivity and accuracy were significantly higher than that of bone scintigraphy and CT (P<0.05). The sensitivities, specificities, and accuracy levels between CT and bone scintigraphy did not differ on either a per-lesion or per-patient basis (P>0.05). MRI appears to be superior for the detection of ribs metastases in lung cancer.  相似文献   

14.
The interaction of the Fip1 subunit of polyadenylation factor I with the Saccharomyces cerevisiae poly(A) polymerase (PAP) was assayed in vivo by two-hybrid analysis and was found to involve two separate regions on PAP, located at opposite ends of the protein sequence. In vitro, Fip1 blocks access of the RNA primer to an RNA binding site (RBS) that overlaps the Fip1 carboxy-terminal interaction region and, in doing so, shifts PAP to a distributive mode of action. Partial truncation of this RBS has the same effect, indicating that this site is required for processivity. A comparison of the utilization of ribo- and deoxyribonucleotides as substrates indicates the existence on PAP of a second RBS which recognizes the last three nucleotides at the 3′ end of the primer. This site discriminates against deoxyribonucleotides at the 3′ end, and interactions at this site are not affected by Fip1. Further analysis revealed that the specificity of PAP for adenosine is not simply a function of the ATP binding site but also reflects interactions with bases at the 3′ end of the primer and at another contact site 14 nucleotides upstream of the 3′ end. These results suggest that the unique specificity of PAP for ribose and base, and thus the extent and type of activity with different substrates, depends on interactions at multiple nucleotide binding sites.  相似文献   

15.
The detection of copy number variants (CNV) by array-based platforms provides valuable insight into understanding human diversity. However, suboptimal study design and data processing negatively affect CNV assessment. We quantitatively evaluate their impact when short-sequence oligonucleotide arrays are applied (Affymetrix Genome-Wide Human SNP Array 6.0) by evaluating 42 HapMap samples for CNV detection. Several processing and segmentation strategies are implemented, and results are compared to CNV assessment obtained using an oligonucleotide array CGH platform designed to query CNVs at high resolution (Agilent). We quantitatively demonstrate that different reference models (e.g. single versus pooled sample reference) used to detect CNVs are a major source of inter-platform discrepancy (up to 30%) and that CNVs residing within segmental duplication regions (higher reference copy number) are significantly harder to detect (P < 0.0001). After adjusting Affymetrix data to mimic the Agilent experimental design (reference sample effect), we applied several common segmentation approaches and evaluated differential sensitivity and specificity for CNV detection, ranging 39–77% and 86–100% for non-segmental duplication regions, respectively, and 18–55% and 39–77% for segmental duplications. Our results are relevant to any array-based CNV study and provide guidelines to optimize performance based on study-specific objectives.  相似文献   

16.
The 5′ end of the genomic RNA of rubella virus (RUB) contains a 14-nucleotide (nt) single-stranded leader (ss-leader) followed by a stem-and-loop structure [5′(+)SL] (nt 15 to 65), the complement of which at the 3′ end of the minus-strand RNA [3′(−)SL] has been proposed to function as a promoter for synthesis of genomic plus strands. A second intriguing feature of the 5′ end of the RUB genomic RNA is the presence of a short (17 codons) open reading frame (ORF) located between nt 3 and 54; the ORF encoding the viral nonstructural proteins (NSPs) initiates at nt 41 in an alternate translational frame. To address the functional significance of these features, we compared the 5′-terminal sequences of six different strains of RUB, with the result that the short ORF is preserved (although the coding sequence is not conserved) as is the stem part of both the 5′(+)SL and 3′(−)SL, while the upper loop part of both structures varies. Next, using Robo302, an infectious cDNA clone of RUB, we introduced 31 different mutations into the 5′-terminal noncoding region, and their effects on virus replication and macromolecular synthesis were examined. This mutagenesis revealed that the short ORF is not essential for virus replication. The AA dinucleotide at nt 2 and 3 is of critical importance since point mutations and deletions that altered or removed both of these nucleotides were lethal. None of the other mutations within either the ss-leader or the 5′(+)SL [and accordingly within the 3′(−)SL], including deletions of up to 15 nt from the 5′(+)SL and three different multiple-point mutations that lead to destabilization of the 5′(+)SL, were lethal. Some of the mutations within both ss-leader and the 5′(+)SL resulted in viruses that grew to lower titers than the wild-type virus and formed opaque and/or small plaques; in general mutations within the stem had a more profound effect on viral phenotype than did mutations in either the ss-leader or upper loop. Mutations in the 5′(+)SL, but not in the ss-leader, resulted in a significant reduction in NSP synthesis, indicating that this structure is important for efficient translation of the NSP ORF. In contrast, viral plus-strand RNA synthesis was unaffected by the 5′(+)SL mutations as well as the ss-leader mutations, which argues against the proposed function of the 3′(−)SL as a promoter for initiation of the genomic plus-strand RNA.  相似文献   

17.

Background

Understanding the role of different classes of T cells during HIV infection is critical to determining which responses correlate with protective immunity. To date, it is unclear whether alterations in regulatory T cell (Treg) function are contributory to progression of HIV infection.

Methodology

FOXP3 expression was measured by both qRT-PCR and by flow cytometry in HIV-infected individuals and uninfected controls together with expression of CD25, GITR and CTLA-4. Cultured peripheral blood mononuclear cells were stimulated with anti-CD3 and cell proliferation was assessed by CFSE dilution.

Principal Findings

HIV infected individuals had significantly higher frequencies of CD4+FOXP3+ T cells (median of 8.11%; range 1.33%–26.27%) than healthy controls (median 3.72%; range 1.3–7.5%; P = 0.002), despite having lower absolute counts of CD4+FOXP3+ T cells. There was a significant positive correlation between the frequency of CD4+FOXP3+ T cells and viral load (rho = 0.593 P = 0.003) and a significant negative correlation with CD4 count (rho = −0.423 P = 0.044). 48% of our patients had CD4 counts below 200 cells/µl and these patients showed a marked elevation of FOXP3 percentage (median 10% range 4.07%–26.27%). Assessing the mechanism of increased FOXP3 frequency, we found that the high FOXP3 levels noted in HIV infected individuals dropped rapidly in unstimulated culture conditions but could be restimulated by T cell receptor stimulation. This suggests that the high FOXP3 expression in HIV infected patients is likely due to FOXP3 upregulation by individual CD4+ T cells following antigenic or other stimulation.

Conclusions/Significance

FOXP3 expression in the CD4+ T cell population is a marker of severity of HIV infection and a potential prognostic marker of disease progression.  相似文献   

18.
The two peptides (Lcn-α and Lcn-β) of the two-peptide bacteriocin lactococcin G (Lcn) were changed by stepwise site-directed mutagenesis into the corresponding peptides (Ent-α and Ent-β) of the two-peptide bacteriocin enterocin 1071 (Ent), and the potencies and specificities of the various hybrid constructs were determined. Both Lcn and, to a lesser extent, Ent were active against all the tested lactococcal strains, but only Ent was active against the tested enterococcal strains. The two bacteriocins thus differed in their relative potencies to various target cells, despite their sequence similarities. The hybrid combination Lcn-α+Ent-β had low potency against all strains tested, indicating that these two peptides do not interact optimally. The reciprocal hybrid combination (i.e., Ent-α+Lcn-β), in contrast, was highly potent, indicating that these two peptides may form a functional antimicrobial unit. In fact, this hybrid combination (Ent-α+Lcn-β) was more potent against lactococcal strains than wild-type Ent was (i.e., Ent-α+Ent-β), but it was inactive against enterococcal strains (in contrast to Ent but similar to Lcn). The observation that Ent-α is more active against lactococci in combination with Lcn-β and more active against enterococci in combination with Ent-β suggests that the β peptide is an important determinant of target cell specificity. Especially the N-terminal residues of the β peptide seem to be important for specificity, since Ent-α combined with an Ent-β variant with Ent-to-Lcn mutations at positions 1 to 4, 7, 9, and 10 was >150-fold less active against enterococcal strains but one to four times more active against lactococcal strains than Ent-α+Ent-β. Moreover, Ent-to-Lcn single-residue mutations in the region spanning residues 1 to 7 in Ent-β had a more detrimental effect on the activity against enterococci than on that against lactococcal strains. Of the single-residue mutations made in the N-terminal region of the α peptide, the Ent-to-Lcn mutations N8Q and P12R in Ent-α influenced specificity, as follows: the N8Q mutation had no effect on activity against tested enterococcal strains but increased the activity 2- to 4-fold against the tested lactococcal strains, and the P12R mutation reduced the activity >150-fold and only ~2-fold against enterococcal and lactococcal strains, respectively. Changing residues in the C-terminal half/part of the Lcn peptides (residues 20 to 39 and 25 to 35 in Lcn-α and Lcn-β, respectively) to those found in the corresponding Ent peptides did not have a marked effect on the activity, but there was an ~10-fold or greater reduction in the activity upon also introducing Lcn-to-Ent mutations in the mid-region (residues 8 to 19 and 9 to 24 in Lcn-α and Lcn-β, respectively). Interestingly, the Lcn-to-Ent F19L+G20A mutation in an Lcn-Ent-β hybrid peptide was more detrimental when the altered peptide was combined with Lcn-α (>10-fold reduction) than when it was combined with Ent-α (~2-fold reduction), suggesting that residues 19 and 20 (which are part of a GXXXG motif) in the β peptide may be involved in a specific interaction with the cognate α peptide. It is also noteworthy that the K2P and A7P mutations in Lcn-β reduced the activity only ~2-fold, suggesting that the first seven residues in the β peptides do not form an α-helix.  相似文献   

19.
Monkeypox viruses (MPXV) cause human monkeypox, a zoonotic smallpox-like disease endemic to Africa, and are of worldwide public health and biodefense concern. Using viruses from the Congo (MPXV-2003-Congo-358) and West African (MPXV-2003-USA-044) clades, we constructed recombinant viruses that express the luciferase gene (MPXV-Congo/Luc+and MPXV-USA-Luc+) and compared their viral infection in mice by biophotonic imaging. BALB/c mice became infected by both MPXV clades, but they recovered and cleared the infection within 10 days post-infection (PI). However, infection in severe combined immune deficient (SCID) BALB/c mice resulted in 100% lethality. Intraperitoneal (IP) injection of both MPXV-Congo and MPXV-Congo/Luc+resulted in a systemic clinical disease and the same mean time-to-death at 9 (±0) days post-infection. Likewise, IP injection of SCID-BALB/c mice with MPXV-USA or the MPXV-USA-Luc+, resulted in similar disease but longer (P<0.05) mean time-to-death (11±0 days) for both viruses compared to the Congo strains. Imaging studies in SCID mice showed luminescence in the abdomen within 24 hours PI with subsequent spread elsewhere. Animals infected with the MPXV-USA/Luc+had less intense luminescence in tissues than those inoculated with MPXV-Congo/Luc+, and systemic spread of the MPXV-USA/Luc+virus occurred approximately two days later than the MPXV-Congo/Luc+. The ovary was an important target for viral replication as evidenced by the high viral titers and immunohistochemistry. These studies demonstrate the suitability of a mouse model and biophotonic imaging to compare the disease progression and tissue tropism of MPX viruses.  相似文献   

20.
Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2′-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2′-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号