首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe, stand-replacing fires affect large areas of northern temperate and boreal forests, potentially modifying ecosystem function for decades after their occurrence. Because these fires occur over large extents, and in areas where plant production is limited by nitrogen (N) availability, the effect of fire on N cycling may be important for long-term ecosystem productivity. In this article, we review what is known about postfire N cycling in northern temperate and boreal forests experiencing stand-replacing fires. We then build upon existing literature to identify the most important mechanisms that control postfire N availability in systems experiencing severe, stand-replacing fires compared with fires of lower severity. These mechanisms include changes in abiotic conditions caused by the opening of the canopy (for example, decreased LAI, increased solar radiation), changes in ground layer quantity and quality (for example, nutrient release, permafrost levels), and postfire plant and microbial adaptations affecting N fixation and N uptake (for example, serotiny, germination cues). Based on the available literature, these mechanisms appear to affect N inputs, internal N cycling, and N outputs in various ways, indicating that severe fire systems are variable across time and space as a result of complex interactions between postfire abiotic and biotic factors. Future experimental work should be focused on understanding these mechanisms and their variability across the landscape.  相似文献   

2.
We used LANDIS, a model of forest disturbance and succession, to simulate successional dynamics of forests in the southern Appalachian Mountains. The simulated environments are based on the Great Smoky Mountains landscapes studied by Whittaker. We focused on the consequences of two contrasting disturbance regimes—fire exclusion versus frequent burning—for the Yellow pine (Pinus L., subgenus Diploxylon Koehne) and oak (Quercus L.) forests that occupy dry mountain slopes and ridgetops. These ecosystems are a conservation priority, and declines in their abundance have stimulated considerable interest in the use of fire for ecosystem restoration. Under fire exclusion, the abundance of Yellow pines is projected to decrease, even on the driest sites (ridgetops, south‐ and west‐facing slopes). Hardwoods and White pine (P. strobus L.) replace the Yellow pines. In contrast, frequent burning promotes high levels of Table Mountain pine (P. pungens Lamb.) and Pitch pine (P. rigida Mill.) on the driest sites and reduces the abundance of less fire‐tolerant species. Our simulations also imply that fire maintains open woodland conditions, rather than closed‐canopy forest. For oaks, fire exclusion is beneficial on the driest sites because it permits oaks to replace the pines. On moister sites (north‐ and east‐facing slopes), however, fire exclusion leads to a diverse mix of oaks and other species, whereas frequent burning favors Chestnut oak (Q. montana Willd.) and White oak (Q. alba L.) dominance. Our results suggest that reintroducing fire may help restore decadent pine and oak stands in the southern Appalachian Mountains.  相似文献   

3.
Interest in preserving older forests at the landscape level has increased in many regions, including the Pacific Northwest of the United States. The Northwest Forest Plan (NWFP) of 1994 initiated a significant reduction in the harvesting of older forests on federal land. We used historical satellite imagery to assess the effect of this reduction in relation to: past harvest rates, management of non-federal forests, and the growing role of fire. Harvest rates in non-federal large-diameter forests (LDF) either decreased or remained stable at relatively high rates following the NWFP, meaning that harvest reductions on federal forests, which cover half of the region, resulted in a significant regional drop in the loss of LDF to harvest. However, increased losses of LDF to fire outweighed reductions in LDF harvest across large areas of the region. Elevated fire levels in the western United States have been correlated to changing climatic conditions, and if recent fire patterns persist, preservation of older forests in dry ecosystems will depend upon practical and coordinated fire management across the landscape. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author Contributions: The study was conceived and designed by S.P.H., W.B.C., T.A.S, and M. M. The paper was written primarily by S.P.H, with editorial help by T.A.S. and W.B.C. The research itself, including mapping and analysis, was performed by S.P.H., D.P., M.G.W., and M.L. M.M. contributed additional methodologies related to the creation and validations of maps of historical older forests.  相似文献   

4.
Traditional biogeochemical theories suggest that ecosystem nitrogen retention is controlled by biotic N limitation, that stream N losses should increase with successional age, and that increasing N deposition will accelerate this process. These theories ignore the role of dissolved organic nitrogen (DON) as a mechanism of N loss. We examined patterns of organic and inorganic N export from sets of old-growth and historically (80–110 years ago) logged and burned watersheds in the northeastern US, a region of moderate, elevated N deposition. Stream nitrate concentrations were strongly seasonal, and mean (± SD) nitrate export from old-growth watersheds (1.4 ± 0.6 kg N ha−1 y−1) was four times greater than from disturbed watersheds (0.3 ± 0.3 kg N ha−1 y−1), suggesting that biotic control over nitrate loss can persist for a century. DON loss averaged 0.7 (± 0.2) kg N ha−1 y−1 and accounted for 28–87% of total dissolved N (TDN) export. DON concentrations did not vary seasonally or with successional status, but correlated with dissolved organic carbon (DOC), which varied inversely with hardwood forest cover. The patterns of DON loss did not follow expected differences in biotic N demand but instead were consistent with expected differences in DOC production and sorption. Despite decades of moderate N deposition, TDN export was low, and even old-growth forests retained at least 65% of N inputs. The reasons for this high N retention are unclear: if due to a large capacity for N storage or biological removal, N saturation may require several decades to occur; if due to interannual climate variability, large losses of nitrate may occur much sooner. Received 27 April 1999; accepted 30 May 2000.  相似文献   

5.
Land-use change in the tropics is creating secondary forest at an unprecedented rate. In the tropical Americas, mature dry tropical forest is rapidly being converted to secondary forest during the fallow period of shifting cultivation. We investigated litter phosphorus (P) and nitrogen (N) dynamics in forests recovering from shifting cultivation of maize (corn) in three regions of the Southern Yucatan Peninsula, Mexico. Our goal was to understand how nutrient and water availability affect forest recovery following conversion of mature forest to agricultural land. To investigate such changes at a regional scale, newly fallen litter was collected monthly along a seasonal, a successional, and a precipitation gradient. Reflecting possible P limitation, litter P concentration declined with forest age, while litter N concentration did not differ between age classes. Average litter P concentration from the southern, wettest region was 0.87 mg/g, almost twice the litter P concentration in the drier central and northern regions (0.44 and 0.45 mg/g, respectively). Average N concentrations of litter from the three regions ranged from 1.1% to 1.2%, with no regional differences. However, minima in both P and N concentration from all regions were pronouncedly timed with peak litterfall, suggesting nutrient retranslocation during periods of water stress. Additionally, successional differences in litter P were clearest during wetter months. P nutrient-use efficiency was lowest in the southern region and highest in the central and northern study regions. N nutrient-use efficiency was up to 40 times lower than P nutrient-use efficiency and showed no regional differences. Overall, our results suggest that litter nutrient dynamics in secondary dry tropical forests of the Southern Yucatan are strongly influenced by water and nutrient availability, especially P, as well as land-use history.  相似文献   

6.
European earthworms are colonizing worm-free hardwood forests across North America. Leading edges of earthworm invasion in forests of northern Minnesota provide a rare opportunity to document changes in soil characteristics as earthworm invasions are occurring. Across leading edges of earthworm invasion in four northern hardwood stands, increasing total earthworm biomass was associated with rapid disappearance of the O horizon. Concurrently, the thickness, bulk density and total soil organic matter content of the A horizon increased, and it’s percent organic matter and fine root density decreased. Different earthworm species assemblages influenced the magnitude and type of change in these soil parameters. Soil N and P availability were lower in plots with high earthworm biomass compared to plots with low worm biomass. Decreases in soil nitrogen availability associated with high earthworm biomass were reflected in decreased foliar nitrogen content for Carex pensylvanica, Acer saccharum and Asarum canadense but increased foliar N for Athyrium felix-femina. Overall, high earthworm biomass resulted in increased foliar carbon to nitrogen ratios. The effects of earthworm species assemblages on forest soil properties are related to their feeding and burrowing habits in addition to effects related to total biomass. The potential for large ecosystem consequences following exotic earthworm invasion has only recently been recognized by forest ecologists. In the face of rapid change and multiple pressures on native forest ecosystems, the impacts of earthworm invasion on forest soil structure and function must be considered.  相似文献   

7.
赵蔓  张晓曼  杨明洁 《生态学报》2023,43(18):7412-7421
探究不同程度林火干扰对油松(Pinus tabuliformis)针叶次生林植物物种多样性特征与土壤理化性质的影响以及二者之间的关系,对灾后油松针叶次生林的可持续经营具有重要意义。采用典型样地调查法对山西省药林寺森林公园不同程度林火干扰后的油松次生林群落进行物种多样性分析,并测定土壤理化性质。结果表明:(1)在调查研究样方中共记录到维管植物38种,在不同程度林火干扰下物种种类表现为对照(CK)>重度>中度。(2)乔木层的Simpson指数、Margalef指数与灌木层的α多样性指数在重度林火干扰后与CK相比显著升高;草本层的变化规律与灌木层相反。(3)样地群落稳定性表现为:中度>CK>重度。(4)在重度林火干扰后0—10cm土层中的含水率、有机质、全氮、碱解氮、速效磷含量与CK相比显著升高35.42%、102.89%、29.41%、21.67%、48.50%,10—20cm土层中的全氮、全磷、全钾、速效磷、速效钾含量与CK相比显著降低54.17%、28.94%、7.47%、1.74%、14.13%。(5)冗余分析结果表明:0—10cm土层中全氮、碱解氮、全磷及1...  相似文献   

8.
Forest openings, also known as glades, arise through a variety of mechanisms including disturbance (fire and blow downs) and local variation in soil or bedrock geology. They are common in many forest types and are often dominated by locally rare herbaceous species. Prescribed burning is increasingly used as a management approach for maintaining glades although little is known about the effects of fire on these habitats. Of particular concern is the potential for nutrient loss during and after fire because glades are often characterized by nutrient‐poor soils. We quantitated nutrient losses through combustion and leaching for glade and adjacent forest habitats subjected to a prescribed burn. Our findings suggest that spring burns do not result in appreciable loss of nutrient capital from glades in comparison with those observed in the surrounding forest. Fire resulted in a substantial loss of litter mass (37%) in the forest but no measurable loss in the glade. Nitrogen losses through combustion were significant in the forest and were equivalent to 4.5 years of atmospheric inputs. Fire significantly increased soil nitrate pools in forest but not in glade plots. No detectable increases in nitrogen, phosphorus, or base cation leaching were observed in either forest or glade habitats within 4 months after the burn. These findings suggest that plant and microbial nutrient uptake rapidly reestablish control over leaching losses when burns are conducted at the start of the growing season. Biotic retention minimizes fire impacts on nutrient loss from the ecosystem.  相似文献   

9.
《植物生态学报》2017,41(6):597
Aims Soil microbes play a key role in the biogeochemical cycling in terrestrial ecosystems and are important for the nutrient recovery of degraded soils due to disturbances. However, dynamics in soil microbial biomass during the development of the secondary forest after logging are little known. Our objectives were to examine the temporal dynamics and influencing factors of soil microbial biomass carbon content (Cmic) and nitrogen content (Nmic) along a temperate forest logging chronosequence.Methods The logging chronosequence included four sites with 0-year, 10-year, 25-year, and 56-year sites since clear cutting of a deciduous broadleaved forest and was established in 2014 in the Mao’ershan Forest Ecosystem Research Station, Northeast China. The Cmic and Nmic at all the sites were measured monthly during the growing season (from April to October) with the chloroform fumigation extraction method; the soil dissolved organic carbon content (Cdis), total nitrogen content (Ndis), soil water content and temperature were simultaneously measured. Important findings (1) There were significant differences in soil microbial biomass among the four sites: the means of Cmic at the 56-year and 0-year sites were significantly higher than those at the 25-year and 10-year sites; the means of Nmic at the 0-year and 56-year sites were significantly higher than those at the 10-year site, while the 25-year site had intermediate Nmic; The Cmic/Nmic ratios at the 56-year and 10-year sites were significantly higher than those at the 25-year and 0-year sites. (2) The Cmic and Nmic at the 0-year site tended to decrease at the end of the growing season compared to earlier times, while those at the rest sites showed an increasing trend or no significant change. Soil microbial biomass among the 10-year, 25-year, and 56-year sites differed at the early growing season, and its amplitude of variations decreased as the stand age increased. The Cmic/Nmic ratios at all sites showed a “W-shaped” seasonal pattern. (3) The main influencing factors of the seasonality of soil microbial biomass varied with the stand ages: they switched from soil water content at the 0-year and 10-year sites to the soil dissolved nutrients contents at the 10-year, 25-year, and 56-year sites. The seasonality of Cmic/Nmic ratios at the 0-year site was mainly influenced by soil temperature and Cdis, while those at the other three sites were driven by the Cdis/Ndisratio. It was concluded that with the forest development after clear cutting, the characteristics of vegetation and soil have been changing, inducing increased soil microbial biomass and thereby improved soil nutrient regime, which reflected strong links between aboveground changes in vegetation and belowground dynamics in soil microbes.  相似文献   

10.
We compared bird diversity and frequency in selection logged and unlogged forest to determine the effects of recent selection logging on avian biodiversity in a subtropical, moist evergreen forest. We used a combination of mist netting and fixed-radius point counts to assess bird communities in February and March 1993 in northwestern Belize. Vegetation structure and composition was similar in logged and unlogged forest. The 66 most common species occurred with statistically similar frequency in logged and unlogged forest although 13 species were two times more frequent in intact forest. Numbers of total bird species were similar between logging gaps and the logged forest matrix, and between the logged forest matrix and unlogged forests. A comparison of numbers of species in 26 guilds based on migration strategy, diet, foraging substrate, and height strata also showed them to be similar regardless of logging history. Our results differed from previous studies that reported lower bird species richness and abundance of individual species in logged tropical forests than in unlogged forest. The differences might be explained by the lower logging intensity and/or greater levels of natural disturbance in our study area compared to previous studies.  相似文献   

11.
12.
The hydrochemical signatures of forested ecosystems are known to be determined by a time-variant combination of physical-hydrologic, geochemical, and biologic processes. We studied subsurface potassium (K), calcium (Ca), and nitrate (NO3) in an experimental red -pine mesocosm to determine how trees affect the behavior of these nutrients in soil water, both during growth and after a harvest disturbance. Solution chemistry was monitored for 2 years at the end of a 15-year period of tree growth, and then for 3 more years after harvest and removal of aboveground biomass. Concentrations were characterized by three distinct temporal patterns that we ascribe to changes in solute generation mechanisms. Prior to harvest, K soil-water concentrations were relatively uniform with depth, whereas Ca soil-water concentrations doubled with depth. Nitrate concentrations were below detection in soil water and discharge (drainage) water. Plant uptake and water/nutrient cycling exerted strong control during this interval. During the 1st year after harvest, K concentrations tripled in shallow soil water, relative to preharvest levels, and showed a strong seasonal peak in discharge that mimicked soil temperature. Summer soil temperatures and annual water flux also increased. Decomposition of labile litter, with complete nitrogen (N) immobilization, characterized this interval. In the third interval (years 2 and 3 after harvest), decomposition shifted from N to carbon (C) limitation, and Ca and NO3 concentrations in discharge spiked to nearly 200 and 400 μM, respectively. Relatively stable ionic strength and carbonate chemistry in discharge, throughout the study period, indicate that carbonic-acid weathering was sustained by belowground decomposition long after the harvest. This stable chemical weathering regime, along with the persistence of N limitation for a long period after disturbance, may be characteristic of early-phase primary-successional systems.  相似文献   

13.
We analyzed soil organic matter distribution and soil solution chemistry in plots with and without earthworms at two sugar maple (Acer saccharum)–dominated forests in New York State, USA, with differing land-use histories to assess the influence of earthworm invasion on the retention or loss of soil carbon (C) and nitrogen (N) in northern temperate forests. Our objectives were to assess the influence of exotic earthworm invasion on (a) the amount and depth distribution of soil C and N, (b) soil 13C and 15N, and (c) soil solution chemistry and leaching of C and N in forests with different land-use histories. At a relatively undisturbed forest site (Arnot Forest), earthworms eliminated the thick forest floor, decreased soil C storage in the upper 12 cm by 28%, and reduced soil C:N ratios from 19.2 to 15.3. At a previously cultivated forest site with little forest floor (Tompkins Farm), earthworms did not influence the storage of soil C or N or soil C:N ratios. Earthworms altered the stable isotopic signature of soil at Arnot Forest but not at Tompkins Farm; the alteration of stable isotopes indicated that earthworms significantly increased the loss of forest floor C but not N from the soil profile at Arnot Forest. Nitrate (NO3) concentrations in tension and zero-tension lysimeters were much greater at Tompkins Farm than Arnot Forest, and earthworms increased NO3 leaching at Tompkins Farm. The results suggest that the effect of earthworm invasion on the distribution, retention, and solution chemistry of soil C and N in northern temperate forests may depend on the initial quantity and quality of soil organic matter at invaded sites.  相似文献   

14.
The effects of fire on forest structure and composition were studied in a severely fire-impacted landscape in the eastern Amazon. Extensive sampling of area forests was used to compare structure and compositional differences between burned and unburned forest stands. Burned forests were extremely heterogeneous, with substantial variation in forest structure and fire damage recorded over distances of <50 m. Unburned forest patches occurred within burned areas, but accounted for only six percent of the sample area. Canopy cover, living biomass, and living adult stem densities decreased with increasing fire inrensiry / frequency, and were as low as 10–30 percent of unburned forest values. Even light burns removed >70 percent of the sapling and vine populations. Pioneer abundance increased dramatically with burn intensity, with pioneers dominating the understory in severely damaged areas. Species richness was inversely related to burn severity, but no clear pattern of species selection was observed. Fire appears to be a cyclical event in the study region: <30 percent of the burned forest sample had been subjected to only one burn. Based on estimated solar radiation intensities, burning substantially increases fire susceptibility of forests. At least 50 percent of the total area of all burned forests is predicted to become flammable within 16 rainless days, as opposed to only 4 percent of the unburned forest. In heavily burned forest subjected to recurrent fires, 95 percent of the area is predicted to become flammable in <9 rain-free days. As a recurrent disturbance phenomenon, fire shows unparalleled potential to impoverish and alter the forests of the eastern Amazon.  相似文献   

15.
The effects of commercial forestry harvest and regeneration practices (clearfelling and slash-burning) on the lucanid fauna of the wet sclerophyll forests of southern Tasmania and the dry sclerophyll forests of eastern Tasmania were examined using pitfall catches. Lucanids are saproxylic beetles, dependent on dead, moribund and decaying wood. Samples taken from old-growth forest and from a chronosequence of sites regenerating after logging, in each forest type, were used to compare the species richness and abundance of the lucanid assemblages. In both forest types, species richness and abundance was highest in the youngest regeneration sites (1–3 year), reflecting the species richness of the original and adjacent unlogged forest, lowest in the older (20–25 year) sites, and variable in the old-growth sites. TWINSPAN cluster analysis showed no clear distinction between regeneration and old-growth forest. The post-harvest slash and stump residue provided an important refugium and initial habitat, but our research indicates that some species may not maintain populations in the long term. Our results suggest that most species of lucanids will find a continuous supply of suitable habitat only in old-growth forests; and such species may become less common as clearfell harvesting leads to a replacement of heterogeneous old-growth forest with single-aged monospecific stands. Continuity of supply of wood in all decay stages, the maintenance of sufficient source areas, and biological connectivity between old-growth stands to enable dispersal, are all likely to be essential to maintain lucanid beetle community integrity. If similar principles apply to other saproxylic species of invertebrate, then clearfelling and slash-burning may cause a gradual extinction of an important element of the forest biota.  相似文献   

16.
大兴安岭北部天然针叶林土壤氮矿化特征   总被引:5,自引:5,他引:5  
肖瑞晗  满秀玲  丁令智 《生态学报》2019,39(8):2762-2771
采用顶盖埋管法对大兴安岭地区天然针叶林(樟子松林、樟子松-兴安落叶松混交林和兴安落叶松林)土壤铵态氮(NH~+_4-N)、硝态氮(NO~-_3-N)、净氮矿化速率进行研究,并探索土壤理化性质与氮矿化之间的相关性,为大兴安岭地区森林生态系统土壤养分管理及森林经营提供帮助。结果表明:观测期内(5—10月)3种林型土壤无机氮变化范围为31.51—70.42 mg/kg,以NH~+_4-N形式存在为主,占比达90%以上,且与纯林相比混交林土壤无机氮含量较高。3种林型土壤净氮矿化、净氨化、净硝化速率月变化趋势呈V型,7、8月表现为负值,其他月份为正值。净氮矿化速率变化范围樟子松林为-0.54—1.28 mg kg~(-1) d~(-1)、樟子松-兴安落叶松混交林为-0.13—0.55 mg kg~(-1) d~(-1)、兴安落叶松林为-0.80—1.05 mg kg~(-1) d~(-1)。土壤净氨化过程在土壤氮矿化中占主要地位,占比达60%以上。3种林型土壤净氮矿化、净氨化及净硝化速率垂直差异显著,0—10 cm土层矿化作用明显高于10—20 cm土层(P0.05)。土壤氮矿化速率与土壤含水量、土壤有机碳含量、土壤C/N、枯落物全氮含量和枯落物C/N均存在显著相关性。不同类型的森林土壤及枯落物的质量也存在差异,进而影响土壤氮矿化特征。  相似文献   

17.
火干扰对大兴安岭北部原始林下层植物多样性的影响   总被引:5,自引:0,他引:5  
在景观尺度自然火干扰历史研究的基础上,采用1个物种丰富度指数(物种数 S)、2个均匀度指数(Pielou均匀度指数Eh'和Alatalo均匀度指数E)、3个物种多样性指数(Shannon-Wiener指数H',Hill多样性指数N1和N2)共6个?多样性指数,研究了长期火干扰与最近一次火干扰对大兴安岭北部原始林下木层、草本层及下层总体的植物多样性的影响.研究结果表明,本区下层植物的物种数、均匀度指数和多样性指数都以下木层显著大于草本层,因而下木层对下层植物总体生物多样性的贡献最大,也是主要影响因子.火干扰对下木层、草本层和下层总体的物种丰富度和物种多样性有显著影响,而对均匀度的影响不显著.长期的火干扰影响下,下木层、草本层和下层总体的物种数、各类均匀度指数和物种多样性指数都呈现如下格局:高频类>中频类>低频类,低强类>中强类>高强类.最近一次火干扰影响下,各个生物多样性指数都表现为一致的趋势:低强类>中强类>高强类;短期类>长期类>中期类.下层植物多样性与火干扰的关系是长期适应的结果.  相似文献   

18.
This study examines the effect of four tree species on nitrogen (N) retention within forested catchments of the Catskill Mountains, New York (NY). We conducted a 300-day 15N field tracer experiment to determine how N moves through soil, microbial, and plant pools under different tree species and fertilization regimes. Samples were collected from single-species plots of American beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis L.), red oak (Quercus rubra L.), and sugar maple (Acer saccharum Marsh). Using paired plots we compared the effects of ambient levels of N inputs (11 kg N/ha/y) to additions of 50 kg N/ha/y that began 1.5 years prior to and continued throughout this experiment. Total plot 15N recovery (litter layer, organic and mineral soil to 12 cm, fine roots, and aboveground biomass) did not vary significantly among tree species, but the distribution of sinks for 15N within the forest ecosystem did vary. Recovery in the forest floor was significantly lower in sugar maple stands compared to the other species. 15Nitrogen recovery was 22% lower in the fertilized plots compared to the ambient plots and red oak stands had the largest drop in 15N recovery as a result of N fertilization. Aboveground biomass became a significantly greater 15N sink with fertilization, although it retained less than 1% of the tracer addition. These results indicate that different forest types vary in the amount of N retention in the forest floor, and that forest N retention may change depending upon N inputs.  相似文献   

19.
Soil seed banks are the ecological memory of plant communities and might represent their regeneration potential. This study examines the soil seed bank in hardwood floodplain forests of the biosphere reserve “Valle del Ticino” (Northern Italy) to find out whether the natural forest vegetation can potentially be restored by the soil seed bank. We compared near natural forests of the phytosociological association Polygonato multiflori–Quercetum roboris with stands dominated by the nonnative tree species Robinia pseudoacacia and Prunus serotina in order to investigate whether the composition of the soil seed bank is significantly influenced by the composition of the main canopy tree species and soil properties. Soil seed bank samples were taken from 20 randomly selected plots in stands that were differentiated into four groups related to the dominant forest canopy species. The germinated plants were counted and their species determined. A total of 2,427 plants belonging to 84 species were recorded. The composition of the dominant tree species and soil parameters significantly influence the composition of the seed bank. The similarity with the standing vegetation was very low. Only 13% of the species in the soil seed bank represent the target vegetation. The low percentage of target species and the high percentage of nonnative species imply that the regeneration of near‐natural forest vegetation from the soil seed bank is not feasible. Consequently, disturbances that may activate the soil seed bank should be minimized. Thus, we recommend stopping the mechanical removal of the nonnative tree species in the Ticino Park .  相似文献   

20.
We explored patterns of soil and foliar nutrients across nine mature forest sites in Costa Rica, where mean annual precipitation (MAP) ranged between 3500 and 5500 mm, altitude ranged between 200 and 1200 m, and species composition varied among sites. Our objective was to investigate the relationship between rainfall and plant or soil nutrient characteristics to better understand the potential long‐term effects that alterations in MAP could have on the nutrient dynamics of wet forest plant communities. Indicators of soil N availability (net mineralization and nitrification) decreased with MAP but were not related to foliar N. Soil and foliar P, by contrast, were not correlated with MAP but were positively correlated with each other. Thus, across our gradient foliar P was a better predictor of soil nutrient availability than foliar N. There were wide differences in foliar nutrient concentrations and N:P ratios among species within sites. At each site, legumes had higher mean percent N than nonlegumes, resulting in higher N:P ratios for legumes. Taken together, these data suggest that, at least in these forests, a climate‐driven decrease in MAP could cause an increase in net N mineralization and nitrification for the wetter sites. However, this may not affect productivity at the community level because of low P availability, complex feedbacks between soil and foliar nutrients, and interactions with other biological and environmental factors such as elevation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号