首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

2.
Inositol phospholipid metabolism in human platelets stimulated by ADP   总被引:2,自引:0,他引:2  
ADP-induced changes in inositol phospholipids, phosphatidic acid and inositol phosphates of human platelets have been studied in detail, using not only 32P labelling, but also by examining changes in amounts of the phospholipids, their labelling with [3H]glycerol and their specific radioactivities; changes in the labelling of inositol phosphates in platelets prelabelled with [3H]inositol were also measured. During the early (10 s) stage of reversible ADP-induced primary aggregation in a medium containing fibrinogen and with a concentration of Ca2+ in the physiological range (2 mM), the amounts of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and phosphatidylinositol 4-phosphate (PtdInsP) decreased (by 11.2 +/- 4.9% and 11.3 +/- 5.3%, respectively) while the labelling, but not the amount, of phosphatidic acid increased. The decreases do not appear to be attributable to the action of phospholipase C because the specific radioactivity of phosphatidic acid labelling with [3H]glycerol was not significantly increased at 10 s (although the initial specific radioactivities of the inositol phospholipids and PtdCho were more than double that of phosphatidic acid), and no increases in the labelling of inositol trisphosphate (InsP3), inositol bisphosphate (InsP2) or inositol phosphate (InsP) were detectable at 10 s. Shifts in the interconversions between PtdInsP2 and PtdInsP, and PtdInsP and PtdIns may occur. By 30 to 60 s, when deaggregation was beginning, the amounts of PtdInsP2, PtdInsP and phosphatidic acid were not different from those in unstimulated platelets, but large increases in the 32P-labelling and [3H]glycerol labelling of phosphatidic acid were observed. Formation of [3H]inositol-labelled InsP3 was not detectable at any time in association with ADP-induced primary aggregation, indicating that degradation of PtdInsP2 by phospholipase C is not appreciably stimulated by ADP. These findings were compared with those obtained when platelets were aggregated by ADP in a medium without added of Ca2+ in which secondary aggregation associated with thromboxane A2 (TXA2) formation and release of granule contents occurs. At 10 s (during primary aggregation) the changes were similar in the two media. At 30 s and 60 s (during secondary aggregation in the low-Ca2+ medium), the increases in PtdInsP2, PtdInsP and phosphatidic acid in platelets suspended in the absence of added Ca2+ were larger than those in platelets suspended in the presence of 2 mM Ca2+. In the absence of added Ca2+, ADP-induced increases in the labelling of InsP3, InsP2 and InsP which were probably due to the effects of TXA2 since they were abolished by aspirin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The interaction of a plasmalogenic analog of platelet-activating factor (1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phosphocholine; 1-alkenyl-PAF) with human platelets was studied. 1-Alkenyl-PAF induced an increase in intracellular Ca2+ concentration and inhibition of adenylate cyclase at significantly higher concentrations than PAF. 1-Alkenyl-PAF inhibits PAF-induced platelet aggregation but has no effect on ADP- or thrombin-induced aggregation of human platelets. In contrast to PAF, 1-alkenyl-PAF increases [3H]PGE1 binding with human platelets. The properties of 1-alkenyl-PAF as an agonist or antagonist of PAF receptors apparently depend on its concentration in the cell medium. Under physiological conditions 1-alkenyl-PAF might be a natural PAF antagonist acting in the human cardiovascular system.  相似文献   

4.
Incubation of platelets from normal volunteers, who had not taken any medication at least for 2 weeks, with insulin (200 mu units/ml), resulted in the inhibition of the potentiation of ADP-induced platelet aggregation in the presence of (-)-epinephrine by 50-60% when compared with the control. The inhibitory effect of insulin was not related to the increased cyclic AMP level or decreased thromboxane A2 synthesis in these cells. It was found that the treatment of platelets with insulin decreased alpha 2 adrenergic receptors number of these cells from 413 +/- 92/platelet to 206 +/- 84/platelet as determined by Scatchard analysis of [3H]yohimbine binding. The affinity of the receptors (1.05 +/- 0.02 nM) remained essentially unchanged due to the treatment of platelets with the hormone (1.40 +/- 0.60 nM).  相似文献   

5.
5'-p-Fluorosulfonylbenzoyl adenosine (FSBA), a nucleotide analog of ADP, has been shown to inhibit ADP-induced shape change, aggregation and exposure of fibrinogen binding sites concomitant with covalent modification of a single surface membrane polypeptide of Mr 100,000 (aggregin). Since thrombin can aggregate platelets which have been modified by FSBA and are refractory to ADP, we tested the hypothesis that thrombin-induced platelet aggregation might involve cleavage of aggregin. At a low concentration of thrombin (0.05 U/ml), platelet aggregation, exposure of fibrinogen receptors and cleavage of aggregin in FSBA-modified platelets did not occur, indicating ADP dependence. In contrast, incubation of [3H]FSBA-labeled intact platelets with a higher concentration of thrombin (0.2 U/ml) resulted in cleavage of radiolabeled aggregin, aggregation, and exposure of fibrinogen binding sites. Under identical conditions, aggregin in membranes isolated from [3H]FSBA-labeled platelets was not cleaved by thrombin. Thrombin-induced platelet aggregation and cleavage of aggregin were concomitantly inhibited by a mixture of 2-deoxy-D-glucose, D-gluconic acid 1,5-lactone, and antimycin A. These results suggest that thrombin cleaves aggregin indirectly by activating an endogeneous protease. Thrombin is known to elevate intracellular Ca2+ concentration and thereby activates intracellular calcium dependent thiol proteases (calpains). In contrast to serine protease inhibitors, calpain inhibitors including leupeptin, antipain, and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (chelator of Ca2+) inhibited platelet aggregation and cleavage of aggregin in [3H]FSBA-labeled platelets. Leupeptin, at a concentration of 10-20 microM, used in these experiments, did not inhibit the amidolytic activity of thrombin, thrombin-induced platelet shape change, or the rise in intracellular Ca2+. Purified platelet calpain II caused aggregation of unmodified and FSBA-modified platelets and cleaved aggregin in [3H]FSBA-labeled platelets as well as in isolated membranes. The latter is in marked contrast to the action of thrombin on [3H]FSBA-labeled membranes. Thus, thrombin-induced platelet aggregation may involve intracellular activation of calpain which proteolytically cleaves aggregin thus unmasking latent fibrinogen receptors, a necessary prerequisite for platelet aggregation.  相似文献   

6.
20-Isopropylidene-PGE1 (Isop-PGE1) was about 10 times more potent than PGE1 in inhibition of thrombin-induced aggregation of rabbit washed platelets. Likewise, 20-isopropylidene-17(R)-methyl-carbacyclin (CS-570), a stable PGI2 analogue, was more potent than carbacyclin in the anti-aggregatory activity. In order to define the platelet-prostaglandin interactions, a binding assay was done using platelet membranes with [3H]-PGE1 as a radioligand. Isop-PGE1 (IC50 = 0.18 microM) bound to the PG receptors more potently than PGE1 (IC50 = 2.1 microM). CS-570 (IC50 = 0.39 microM) was more potent than carbacyclin (IC50 = 1.9 microM). These indicate that introduction of an isopropylidene group to the carbon 20 of PGs increases the binding ability to the receptors. These PGE1 and PGI2 analogues activated platelet membrane adenyl cyclase and increased intracellular cAMP levels with the same potency series obtained in the binding experiments. All these results suggest that the binding to the receptors by these PGs is coupled to the activation of adenyl cyclase, followed by the increase in cAMP levels in platelets and the inhibition of platelet aggregation. Thus, the increased anti-aggregatory activity of 20-isop-PGs may be explained by their increased affinity for the PG receptors and stimulation of adenyl cyclase. 15-Epimeric-20-isopropylidene-PGE1 (15-Epi-isop-PGE1), which has an unnatural configuration of the 15-hydroxyl group, was much less potent than isop-PGE1 in the binding experiment and the other three investigations. This indicates that the configuration of the 15-hydroxyl group is important for the binding to the PG receptors and the consequent activities in platelets.  相似文献   

7.
P2Y(12) antagonists such as clopidogrel and AR-C69931MX inhibit aggregation by antagonizing the effects of ADP at P2Y(12) receptors on platelets. Agents such as PGE(1) also inhibit aggregation by stimulating adenylate cyclase to produce cAMP, which interferes with Ca(2+) mobilization within the cell. Since one facet of P2Y(12) receptors is that they mediate inhibition of adenylate cyclase by ADP, it might be expected that P2Y(12) antagonists would interact with PGE(1). We have explored the effects of PGE(1) and AR-C69931MX singly and in combination on ADP-induced intracellular Ca(2+) ([Ca(2+)](i)) responses and aggregation. PGE(1) alone caused parallel dose-dependent inhibition of [Ca(2+)](i) and aggregation responses. AR-C66931MX alone caused only partial inhibition of [Ca(2+)](i) despite a marked inhibitory effect on aggregation. Combinations of PGE(1) with AR-C66931MX were found to act in synergy to reduce both [Ca(2+)](i) and aggregation. This effect was confirmed in patients with acute coronary syndromes by studying the inhibitory effects of PGE(1) on [Ca(2+)](i) and aggregation before and after clopidogrel. In summary, we have shown that P2Y(12) antagonists interact with natural agents such as PGE(1) to provide more effective inhibition of [Ca(2+)](i) and platelet aggregation. This would contribute to the effectiveness of P2Y(12) antagonists as antithrombotic agents in man.  相似文献   

8.
Platelet aggregation. II. Adenyl cyclase, prostaglandin E1, and calcium   总被引:9,自引:0,他引:9  
In exploration of the proposal that prostaglandin E1 (PGE1) inhibits platelet aggregation via stimulation of adenyl cyclase, the temporal relationship of adenosine cyclic 3',5' monophosphate (cyclic AMP) synthesis and inhibition of ADP-induced aggregation in response to PGE1 was studied. The requirement for calcium in aggregation led to the investigation of the effects of calcium ions on platelet adenyl cyclase activity. PGE1 stimulated the synthesis of cyclic AMP from adenosine-5'-triphosphate-8-14-C by platelet membrane fractions and also increased cyclic AMP synthesis in intact platelets previously incubated for 2 hours with adenosine-14-C. The accumulation of cyclic AMP increased signficiantly at low concentrations of PGE1 and reached a maximum at about 1 mug. Regardless of the inducing agent, calcium ions are an absolute requirement for the aggregation of platelets.  相似文献   

9.
Specific binding of phospholipid platelet-activating factor by human platelets   总被引:11,自引:0,他引:11  
The binding of the phospholipid platelet-activating factor 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine (AGEPC) to washed human platelets was more than 80% complete within 2 min, which coincided with the time of initiation of platelet aggregation by AGEPC. Scatchard plot analysis of the binding of [3H]AGEPC to platelets without and with an excess of unlabeled AGEPC revealed two distinct types of binding sites. One platelet site for AGEPC exhibited a high affinity (KD = 37 +/- 13 nM, mean +/- SD), was saturable, and had a low maximal capacity of 1399 +/- 498 (mean +/- SD) molecules of AGEPC/platelet. The other platelet site demonstrated a nearly infinite binding capacity, consistent with nonreceptor uptake of AGEPC into cellular structures. The specificity of the high-affinity binding site for AGEPC was assessed by comparing the capacity of several analogues of AGEPC to inhibit the binding of [3H]AGEPC to platelets and to induce platelet aggregation. An ether linkage in position 1, a short-chain fatty acid in position 2, and a choline moiety in the polar head group proved to be critical both for the binding of [3H]AGEPC to platelets and for the initiation of platelet aggregation. Exposure of platelets to AGEPC for 5 min at 37 degrees C functionally deactivated the exposed platelets to subsequent stimulation by AGEPC, as assessed by diminished aggregation, and concomitantly reduced the specific binding of [3H]AGEPC. Evaluation of the time course of the events of deactivation revealed the loss of an aggregation response to AGEPC after 90 sec at 37 degrees C, despite the retention of up to 50% of the specific binding sites for AGEPC.  相似文献   

10.
Opening of racemic epoxide (3) with (3S)- or (3R)-dimethyl-3-(dimethyl-t-butylsilyloxy)oct-1-ynyl aluminum gave two regioisomers, which were separated chromatographically. The separated regioisomers, themselves mixtures of chromatographically inseparable diastereoisomers, were converted into their dicobalthexacarbonyl complexes, which were easily resolved and isolated by chromatography. The individual diastereoisomers were deprotected to give bicyclo[3.2.0]heptan-3-ones, whose absolute stereochemistry was assigned using circular dichroism. One of these compounds, (1R,2R,3S,5R,3'S)-3-(3'-hydroxyoct-1'-ynyl)-bicyclo[3.2.0]++ +heptan-2-ol-6- oximinoacetic acid (11a) was 4.5 times more potent than PGE1 in inhibiting the ADP-induced aggregation of human platelets. The next most potent compound in this series was the "ent-15-epi" compound (11b), which was 0.034 times the potency of PGE1 in the platelet aggregation assay.  相似文献   

11.
In this study, we demonstrated that ADP-induced platelet aggregation activates the binding of testosterone (T) to its receptor. It is well known that binding of ADP to its receptors induced the release of Ca2+ ions from dense bodies into the cytosol of platelets. In this work, we compared the binding of testosterone or dihydrotestosterone to their receptors using cytosol obtained from ADP-treated and non-treated platelets. These experiments were repeated using EGTA (a calcium chelator) or U73122 (a phospholipase C enzymatic activity inhibitor) to the ADP-treated platelets. In addition, we also developed a competition analysis for the androgen receptors (AR) using [3H]DHT, non-radioactive T, DHT or cyproterone acetate from ADP-treated platelets cytosol. The results from this study indicate that the cytosol obtained from non-ADP-treated platelets did not show any binding to [3H]T or [3H]DHT, whereas cytosol from ADP-treated platelets binds to the radio-labeled androgens. Furthermore cytosol from ADP plus U73122-treated platelets did not show binding to [3H]T or [3H]DHT. These data suggest that intracellular Ca2+ ions stimulates the binding of androgens to their receptors in platelets cytosol. The competition analysis shows that T and DHT have high affinities for the androgen receptors with similar IC50 values, whereas cyproterone acetate shows a lower affinity. The results from these data clearly indicate the presence of androgen receptors in platelets.  相似文献   

12.
Incubation of washed human blood platelets with 5'-p-fluorosulfonylbenzoyl [3H]adenosine (FSBA) covalently labels a single polypeptide of Mr = 100,000. Protection by ADP has suggested that an ADP receptor on the platelet surface membrane was modified. The modified cells, unlike native platelets, failed to aggregate in response to ADP (100 microM) and fibrinogen (1 mg/ml). The extent of binding of 125I-fibrinogen and aggregation was inhibited to a degree related to the incorporation of 5'-p-sulfonylbenzoyl adenosine (SBA) into platelets, indicating FSBA could inhibit the exposure of fibrinogen receptors by ADP necessary for aggregation. Incubation of SBA platelets with alpha-chymotrypsin cleaved the covalently labeled polypeptide and concomitantly reversed the inhibition of aggregation and fibrinogen binding. Platelets proteolytically digested by chymotrypsin prior to exposure to FSBA did not require ADP for aggregation and fibrinogen binding. Moreover, subsequent exposure to FSBA did not inhibit aggregation or fibrinogen binding. The affinity reagent FSBA can displace fibrinogen bound to platelets in the presence of ADP, as well as promote the rapid disaggregation of the platelets. The apparent initial pseudo-first order rate constant of dissociation of fibrinogen was linearly proportional to FSBA concentrations. These studies suggest that a single polypeptide can be altered either by ADP-induced conformational changes or proteolysis by chymotrypsin to reveal latent fibrinogen receptors and promote aggregation of platelets after fibrinogen binding.  相似文献   

13.
Previous studies from our laboratories showed that 5'-p-fluorosulfonylbenzoyl adenosine (FSBA) inhibits ADP-induced platelet shape change, aggregation, and exposure of fibrinogen sites while covalently binding to 100-kDa platelet membrane protein (aggregin) on the intact platelet. Chymotrypsin digests aggregin to a fragment of 70 kDa, abolishing the inhibition, and also cleaves platelet glycoprotein IIIa (GPIIIa) (100 kDa) to a 70-kDa fragment containing the P1A1 epitope. We questioned whether these platelet membrane proteins were distinct. Both 5'-p-[3H]sulfonylbenzoyl adenosine (SBA)-labeled aggregin and 125I-GPIIIa were precipitated by polyclonal antibodies to a 100-kDa fraction of platelet membranes, but aggregin was not precipitated by a monospecific antibody to P1A1 which precipitates GPIIIa. Further a monospecific polyclonal antibody to immunopurified GPIIIa coupled to protein A-Sepharose adsorbed GPIIIa but not aggregin. Similarly, both aggregin and GPIIIa were precipitated by a polyclonal antibody to an isolated 70-kDa component of platelet membrane but only GPIIIa was precipitated by the monoclonal antibody to GPIIIa, (SSA6). Two patients with Glanzman's thrombasthenia whose platelet membranes contained less than 5% GPIIIa as assayed by monoclonal antibody binding (A2A6), incorporated [3H]SBA to the same extent as normal individuals. Furthermore, FSBA inhibited ADP-induced shape change with a similar concentration dependence for both thrombasthenic and normal platelets. Finally, mobility of GPIIIa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was decreased following reduction with dithiothreitol whereas that of [3H]SBA-labeled MP 100 was not altered. We conclude that GPIIIa and aggregin are distinct platelet membrane proteins.  相似文献   

14.
A series of 9-substituted adenine derivatives inhibited adenylate cyclase activity (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) of a particulate preparation of human blood platelets. A 3--6 fold elevation of adenylate cyclase activity by prostaglandin E1 (PGE1) was inhibited in a concentration-related manner by 9-(tetrahydro-5-methyl-2-furyl) adenine (SQ 22,538), 9-(tetrahydro-2-furyl) adenine (SQ 22,536), 9-cyclopentyladenine (SQ 22,534), 9-furfuryladenine (sQ 4647) and 9-benzyladenine (SQ 218611). The I50 values ranged from 21 microM for SQ 22,538 to 140 microM for SQ 21,611. These same adenine derivatives reversed the inhibition by PGE1 of ADP-induced aggregation and the PGE1-stimulated elevation of adenosine 3':5'-monophosphate (cyclic AMP). The reversal of platelet aggregation inhibition by SQ 22,536 and SQ 4647 was concentration-related with I50 values of 30 microM in each case, whereas SQ 22,534 and SQ 21,611 reversed inhibition by 30% at 100 microM. SQ 22,536, SQ 22,534 and SQ 21,611 also blocked the increase in cyclic AMP levels in a concentration-related manner with I50 values of 1, 4 and 60 microM, respectively. SQ 4647 inhibited the elevation of cyclic AMP by more than 85% at 1000 microM. The adenine derivatives had no effect on platelet aggregation or on cyclic AMP levels in the absence of PGE1. These results provide additional evidence that the inhibition of platelet aggregation by PGE1 is mediated by cyclic AMP.  相似文献   

15.
Isolated human blood platelets, loaded with the pH-sensitive fluorescence dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein show cytoplasmic alkalinization upon stimulation with thrombin but acidification with ADP stimulation. In both cases a Na+/H+ exchange is activated. This can be revealed by the sensitivity of the induced pH changes to amiloride and to 5-N-(3-aminophenyl)amiloride (APA), known inhibitors of the Na+/H+ exchanger, and by a dependence on sodium in the external medium. ADP-induced platelet aggregation is not affected by omission of sodium from the external medium. Furthermore, aggregation is barely inhibited (less than 10%) by amiloride or APA at concentrations up to 50 microM while the Ki values in affecting the Na+/H+ exchange are 5.9 and 1.6 microM for amiloride and APA, respectively. Platelet aggregation is inhibited by amiloride or APA at concentrations higher than 50 microM, but this inhibition is apparently due to a secondary effect of the agents. It is concluded that platelet aggregation induced by ADP is not dependent on activation of Na+/H+ exchange.  相似文献   

16.
The binding characteristics of [3H]U46619 to washed human platelets were studied. [3H]U46619 binding to washed human platelets was saturable and displaceable. Kinetic studies yielded a Kd of 11 +/- 4 nM (n = 4). Scatchard analysis of equilibrium binding studies revealed one class of high affinity binding sites with a Kd of 20 +/- 7 nM and a Bmax of 9.1 +/- 2.3 fmole/10(7) platelets (550 +/- 141 binding sites per platelet) (n = 4). A number of compounds that act as either agonists or antagonists of the TXA2/PGH2 receptor were tested for their ability to inhibit the binding of [3H]U46619 to washed human platelets. The Kds of the agonists and antagonists were similar to their potencies to induce or inhibit platelet aggregation. These data provide some evidence that [3H]U46619 binds to the putative human platelet TXA2/PGH2 receptor.  相似文献   

17.
PAF (0.2 microM) induced maximal platelet aggregation in human PRP and [3H]-PAF (1-5 nM) binding to platelet membrane preparations had Kd value of 3.8 nM and Bmax of 200 fmoles/mg of protein. Without UV irradiation, a synthetic azido tetrahydrofuran derivative L662,025 was a reversible and competitive PAF-receptor antagonist with IC50 values of 5.6 +/- 0.3 microM (platelet aggregation) and 1.0 +/- 0.25 microM (receptor binding). Photolysis of L662,025 in the presence of PRP produced an irreversible inhibition of platelet aggregation and specific binding of [3H]-PAF (1 nM). L662,025 did not affect collagen- or ADP-induced human platelet aggregation before or after photolysis. It is a new probe that can be used to identify and characterize the PAF-receptor.  相似文献   

18.
Thromboxane A2 (TXA2) induces platelet shape change, secretion, and aggregation. Using a novel TXA2/prostaglandin endoperoxide receptor antagonist, [1r-[1 alpha(Z),2 beta,3 beta,5 alpha]]-(+)-7-[5-[[(1,1'- biphenyl)-4-yl]methoxy]-3-hydroxy-2-(1-piperidinyl) cyclopentyl]-4-heptenoic acid hydrochloride (GR32191), we demonstrate that these responses are mediated by at least two receptor-effector systems. GR32191 non-competitively inhibited platelet aggregation to the TXA2 mimetics, (15S)-hydroxy-11,9-(epoxymethano) prostadienoic acid (U46619) and [1S-(1 alpha,2 beta(5Z),3 alpha (1E,-3S), 4 alpha)]-7-[3-(3-hydroxy-4-(p-iodophenoxy)-1-butenyl)7- oxabicyclo[2.2.1]hept-2yl]-5-heptenoic acid by binding irreversibly to a TXA2/prostaglandin endoperoxide receptor. Dissociation of [3H]GR32191 from human platelets demonstrated two specific binding sites, one which was rapidly dissociating and a site to which binding was essentially irreversible. Stimulation by U46619 of platelets incubated with GR32191 and subsequently washed to expose the reversible binding site failed to aggregate or to secrete [3H]5-hydroxy-tryptamine; formation of inositol phosphates and activation of protein kinase C were markedly suppressed. In contrast, platelet shape change and calcium stimulation remained at 90% of control. Furthermore, stimulation of the reversible binding site with U46619 induced aggregation in the presence of ADP, demonstrating its functional importance in amplifying the response to other agonists. These data suggest that TXA2 mediates platelet activation through at least two receptor-effector systems; one linked to phospholipase C activation, resulting in platelet aggregation and secretion and a second site mediating an increase in cytosolic calcium and platelet shape change.  相似文献   

19.
The chemical reaction ofN-ethyl-5-phenylisooxazolium-3′-sulfonate (Woodward's Reagent-K, WR-K) with a carboxyl group yields an enol ester that cannot be reduced by sodium borohydride in an aqueous solution, while other nucleophiles such as sulfhydryl, hydroxyl, amino, and imidazole groups, react with WR-K to yield unsaturated ketones that are capable of being reduced by sodium borohydride in an aqueous medium. Aggregin, a 100-kDa protein on the surface of human blood platelets has been identified as an ADP receptor. Autoradiography of the gels obtained by sodium dodecyl sulfate–polyacrylamide gel electrophoresis of the samples of solubilized human blood platelets modified by WR-K and then reduced by tritiated sodium borohydride (NaB[3H]4) showed the presence of a prominent band corresponding to a 100-kDa radiolabeled protein. Labeling of platelets by WR-K and NaB[3H]4was inhibited by ADP, ATP, and thiol group modifying reagents. WR-K blocked completely labeling of platelets by [β-32P]-8-(4-bromo-2,3-dioxo-butylthio)adenosine-5′-diphosphate, an ADP-affinity analog that selectively and covalently labels aggregin (Puri, R. N., Kumar, A., Chen, H., Colman, R. F., and Colman, R. W. (1995)J. Biol. Chem.256, 24482–24488). WR-K also inhibited ADP-induced platelet shape change, aggregation, and mobilization of intracellular Ca2+and blocked ADP-induced inhibition of stimulated adenylate cyclase activity. The results show conclusively that WR-K inhibited ADP-induced platelet responses by preventing binding of ADP to aggregin and suggest that ADP binding domain of aggregin contains an essential thiol group. The method of labeling proteins by WR-K and NaB[3H]4, hitherto not used to distinguish among functional groups modified by WR-K, offers a useful and convenient alternative to previously used ultraviolet spectral methods which cannot be used to investigate the modified proteins in intact cellular systems.  相似文献   

20.
A prostaglandin E2 (PGE2) receptor was solubilized and isolated from cardiac sarcolemma membranes. Its binding characteristics are almost identical to those of the membrane bound receptor. [3H]PGE2 binding to solubilized and membrane bound receptor was sensitive to elevated temperature and no binding was observed in the absence of NaCl. No significant effects of DTT, ATP, Mg2+, Ca2+ or of changes in buffer pH were observed on [3H]PGE2 binding to either solubilized or membrane-bound receptor. Unlabelled PGE1 displaced over 90% of [3H]PGE2 from the CHAPS-solubilized receptor. PGD2, PGI2, PGF2 alpha and 6-keto-PGF1 alpha were not effective in displacing [3H]PGE2 from the receptor. Scatchard analysis of [3H]PGE2 binding to CHAPS-solubilized receptor revealed the presence of two types of PGE2 binding sites with Kd of 0.33 +/- 0.05 nM and 3.00 +/- 0.27 nM and Bmax of 0.5 +/- 0.04 and 2.0 +/- 0.1 pmol/mg of protein. The functional PGE2 receptor was isolated from CHAPS-solubilized SL membrane using two independent methods: first by a WGA-Sepharose chromatography and second by sucrose gradient density centrifugation. Receptor isolated by these two methods bound [3H]PGE2. Unlabelled PGE1 and PGE2 displaced [3H]PGE2 from the purified receptor. Scatchard analysis of [3H]PGE2 binding to purified receptor revealed the presence of the two binding sites as observed for the membrane bound and CHAPS-solubilized receptor. SDS-polyacrylamide gel electrophoresis of the purified receptor fractions revealed the presence of a protein band of M(r) of approx. 100,000. This 100-kDa was photolabelled with [3H]azido-PGE2, a photoactive derivative of PGE2. We propose that this 100-kDa protein is a cardiac PGE2 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号