首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cysteine precursor L-2-oxothiazolidine-4-carboxylate (OTZ, procysteine) can raise cysteine concentration, and thus glutathione levels, in some tissues. OTZ has therefore been proposed as a prodrug for combating oxidative stress. We have synthesized stable isotope labeled OTZ (i.e. L-2-oxo-[5-(13)C]-thiazolidine-4-carboxylate, (13)C-OTZ) and tracked its uptake and metabolism in vivo in rat brain by (13)C magnetic resonance spectroscopy. Although uptake and clearance of (13)C-OTZ was detectable in rat brain following a bolus dose by in vivo spectroscopy, no incorporation of isotope label into brain glutathione was detectable. Continuous infusion of (13)C-OTZ over 20 h, however, resulted in (13)C-label incorporation into glutathione, taurine, hypotaurine and lactate at levels sufficient for detection by in vivo magnetic resonance spectroscopy. Examination of brain tissue extracts by mass spectrometry confirmed only low levels of isotope incorporation into glutathione in rats treated with a bolus dose and much higher levels after 20 h of continuous infusion. In contrast to some previous studies, bolus administration of OTZ did not alter brain glutathione levels. Even a continuous infusion of OTZ over 20 h failed to raise brain glutathione levels. These studies demonstrate the utility of in vivo magnetic resonance for non-invasive monitoring of antioxidant uptake and metabolism in intact brain. These types of experiments can be used to evaluate the efficacy of various interventions for maintenance of brain glutathione.  相似文献   

2.
Glutathione is the main source of intracellular antioxidant protection in the human erythrocyte and its redox status has frequently been used as a measure of oxidative stress. Extracellular glutathione has been shown to enhance intracellular reduced glutathione levels in some cell types. However, there are conflicting reports in the literature and it remains unclear as to whether erythrocytes can utilise extracellular glutathione to enhance the intracellular free glutathione pool. We have resolved this issue using a 13C-NMR approach. The novel use of L-gamma-glutamyl-L-cysteinyl-[2-13C]glycine allowed the intra- and extracellular glutathione pools to be distinguished unequivocally, enabling the direct and non-invasive observation over time of the glutathione redox status in both compartments. The intracellular glutathione redox status was measured using 1H spin-echo NMR, while 13C[1H-decoupled] NMR experiments were used to measure the extracellular status. Extracellular glutathione was not oxidised in the incubations, and did not affect the intracellular glutathione redox status. Extracellular glutathione also did not affect erythrocyte glucose metabolism, as measured from the lactate-to-pyruvate ratio. The results reported here refute the previously attractive hypothesis that, in glucose-starved erythrocytes, extracellular GSH can increase intracellular GSH concentrations by releasing bound glutathione from mixed disulfides with membrane proteins.  相似文献   

3.
Glutathione metabolism was monitored in proliferating intact, perfused MCF-7 breast cancer cells by (13)C NMR spectroscopy. Label incorporation from [3,3'-(13)C(2)]cystine in the perfusate into intracellular glutathione was monitored in native wild-type MCF-7 (MCF-7wt) cells and sublines resistant to doxorubicin (MCF-7dox) and 4-hydroperoxycyclophosphamide (MCF-7hc). Pulse-chase studies showed non-linear rates of isotope label uptake and washout. Fitting these data to an exponential model of glutathione metabolism allowed calculation of rate constants for glutathione metabolism in these cell lines. Comparison of these rate constants showed glutathione metabolism was increased in both drug-resistant lines. No significant difference was observed between these results for cells growing in three dimensions and results for cells cultured in monolayer.  相似文献   

4.
Glutathione S-transferase composition of rat erythrocytes   总被引:1,自引:0,他引:1  
With 1-chloro-2,4-dinitrobenzene as the electrophilic substrate, the specific activity of glutathione S-transferase in rat haemolysates was found to range from 0.002 to 0.013 mumol/min/mg haemoglobin at 30 degrees C. To establish the glutathione S-transferase composition, chromatofocusing was used which indicated the presence of a single soluble isoenzyme with an apparent pI of 6.1. A molecular weight of 48,000 was determined for the enzyme by gel filtration. The transferase enzyme in intact erythrocytes is shown to catalyze the formation of S-(2,4-dinitrophenyl)-glutathione from 1-chloro-2,4-dinitrobenzene and endogenous glutathione. Efflux of this conjugate from erythrocytes proceeded at a rate of 13 nmol/min/ml at 37 degrees C.  相似文献   

5.
N.m.r. studies of red cells   总被引:2,自引:0,他引:2  
Recent n.m.r. studies of intact red cells are described. With 1H n.m.r. the normal high resolution spectra of red cells, even at high fields, are relatively uninformative because the very large number of resonances from the cells merge into a broad envelope. If a simple 90-tau-180 degree spin echo pulse sequence is used, however, many resonances can all be resolved. These include signals from haemoglobin histidines, glutathione, lactate and pyruvate. 13C and 31P signals have also been seen with a spectrometer converted to observe these nuclei essentially simultaneously. N.m.r. is well suited to monitor the time course of events after a perturbation of the cell system. Lactate increase, glutathione recovery after oxidation and alkylation of glutathione by iodoacetate can all be observed directly in red cell suspensions by means of 1H spin echo n.m.r. This method has also been used to measure isotope exchange (1H-2H) of lactate and of pyruvate at both the C-3 and the C-2 positions, and some of these exchange rates can be interpreted in terms of the activity of specific enzymes in the cells. 1H spin echo n.m.r. has also been used to obtain information about the transport rates of small molecules into cells. By means of the 13C/31P spectrometer and [13C-1] glucose, the 13C enrichment of 2,3-diphosphoglycerate (2,3-DPG) can be monitored at the same time as the levels of 2,3-DPG, ATP and inorganic phosphate are observed by 31P n.m.r.  相似文献   

6.
Glycophorin BN was reductively [13C]methylated and the 13C chemical shift of the N-terminal [13C]dimethyl-leucine residue was monitored as a function of pH. These results were compared to the pH-dependent chemical shift studies of the N-terminal [13C]dimethylleucine residues of intact glycophorin AN and N-terminal glyco-octapeptide AN. The results indicate that the titration data for [13C]dimethylleucine of glycophorin BN more closely resembles the titration data observed for the [13C]dimethylleucine residue of the N-terminal glyco-octapeptide AN rather than for the [13C]dimethylleucine residue of intact glycophorin AN. Integration of the 13C resonances indicated that glycophorin BN contains 3-4 lysine residues.  相似文献   

7.
The serine receptor of bacterial chemotaxis is an ideal system in which to investigate the molecular mechanism of transmembrane signaling. Solid-state nuclear magnetic resonance (NMR) techniques such as rotational resonance provide a means for measuring local structure and ligand-induced structural changes in intact membrane proteins bound to native membrane vesicles. A general site-directed biosynthetic (13)C labeling strategy is used to direct the distance measurements to a specific site; the distance is measured between a unique Cys residue and a non-unique, low-abundance residue (Tyr or Phe). A (13)C-(13)C internuclear distance measurement from (13)CO(i) to (13)C beta(i + 3) at the periplasmic edge of the second membrane-spanning helix (TM2) of 5.1 +/- 0.2 A is consistent with the predicted alpha-helical structure and thus demonstrates an accurate long-distance rotational resonance measurement in the 120 kDa membrane-bound receptor. These measurements require a correction for the rotational resonance exchange between the multiple labels of the non-unique amino acid and the natural-abundance (13)C, which is critical to distance measurements in complex systems. A second (13)C-(13)C distance measurement between the transmembrane helices provides a high-resolution measurement of tertiary structure in the transmembrane region. The measured 5.0-5.3 A distance in the presence and absence of ligand is consistent with structural models for the transmembrane region and a proposed signaling mechanism in which ligand binding induces a 1.6 A translation of TM2. This approach can be used for additional measurements of the structure of the transmembrane region and to determine whether the ligand-induced motion is indeed propagated through the transmembrane helices.  相似文献   

8.
Natural-abundance 13C NMR spectroscopy has been used to study the metabolism of the L-lysine-producing bacterium, Brevibacterium flavum. Relationships of biomass formation, precursor uptake, and product excretion, as a function of culture medium, oxygen supply and specific cell membrane permeability, were rapidly determined using 67.89-MHz 13C NMR. The induction of lysine production throughout the growth cycle was studied. Intracellular and extracellular levels of free metabolites and unconsumed precursor were quantitatively measured as a function of growth culture conditions. Limited availability of oxygen resulted in accumulation and excretion of unfavorable products: lactate, succinate, alanine and valine. However, under optimal aeration conditions L-lysine was the sole metabolite detected extracellularly. Various important long-lived intermediates and storage compounds were detected in the intact cells (by NMR measurements). Carbon resonances of carbohydrates and amino acids were resolved and easily identified. Of particular interest are those of trehalose carbons, a storage carbohydrate. Natural-abundance 13C NMR spectroscopy seems most suitable for biotechnological processes where high concentrations of intermediates and end-products can be observed. We anticipate that this approach will be employed to screen overproducing bacterial strains.  相似文献   

9.
In its natural environment, the plant cuticle, which is composed of the biopolymer cutin and a mixture of surface and embedded cuticular waxes, experiences a wide variety of temperatures and hydration states. Consequently, a complete understanding of cuticular function requires study of its thermal and mechanical properties as a function of hydration. Herein, we report the results of a comprehensive 13C nuclear magnetic resonance (NMR) relaxation study of hydrated tomato fruit cuticle. Cross-polarization and direct-polarization experiments serve to measure the solid-like and liquid-like components, respectively, of hydrated cuticle. Localized, high-frequency motions are probed by T1(C) spin relaxation measurements, whereas T1rho(H) and T1rho(C) experiments reflect low-frequency, lower amplitude polymer-chain motions. In addition, variable-temperature measurements of T1(C) and T1rho(C) for dry tomato cuticles are used to evaluate the impact of temperature stress. Results of these experiments are interpreted in terms of changes occurring in individual polymer motions of the cutin/wax components of tomato cuticle and in the interaction of these components within intact cuticle, both of which are expected to influence the functional integrity of this protective plant covering.  相似文献   

10.
Glutathione is the major cellular thiol present in mammalian cells and is critical for maintenance of redox homeostasis. However, current assay systems for glutathione lack application to intact animal tissues. To map the levels of glutathione in intact brain with cellular resolution (acute tissue slices and live animals), we have used two-photon imaging of monochlorobimane fluorescence, a selective enzyme-mediated marker for reduced glutathione. Previously, in vitro experiments using purified components and cultured glial cells attributed cellular monochlorobimane fluorescence to a glutathione S-transferase-dependent reaction with GSH. Our results indicate that cells at the cerebrospinal fluid or blood-brain interface, such as lateral ventricle ependymal cells (2.73 +/- 0.56 mm; glutathione), meningeal cells (1.45 +/- 0.09 mm), and astroglia (0.91 +/- 0.08 mm), contain high levels of glutathione. In comparison, layer II cortical neurons contained 20% (0.21 +/- 0.02 mm) the glutathione content of nearby astrocytes. Neuronal glutathione labeling increased 250% by the addition of the cell-permeable glutathione precursor N-acetylcysteine indicating that the monochlorobimane level or glutathione S-transferase activity within neurons was not limiting. Regional mapping showed that glutathione was highest in cells lining the lateral ventricles, specifically ependymal cells and the subventricular zone, suggesting a possible function for glutathione in oxidant homeostasis of developing neuronal progenitors. Consistently, developing neurons in the subgranular zone of dentate gyrus contained 3-fold more glutathione than older neurons found in the neighboring granular layer. In conclusion, mapping of glutathione levels in intact brain demonstrates a unique role for enhanced redox potential in developing neurons and cells at the cerebrospinal fluid and blood-brain interface.  相似文献   

11.
Aliev AE 《Biopolymers》2005,77(4):230-245
Historical collagen-based parchments have been studied by solid-state NMR. In addition, new parchment (produced according to traditional methods) and gelatin from bovine skin were also studied. Wideline 1H and MAS 13C measurements were carried out directly on intact parchments. A simple approach is proposed for evaluation of the extent of parchment degradation based on the linewidth changes in the 13C CPMAS spectra relative to new parchment and gelatin. Structural (bound) water content was estimated from wideline 1H NMR lineshape and relaxation time measurements. It was found that the relative water content in parchments correlates linearly with 13C MAS linewidths. Its decrease on parchment degradation indicates that structural water molecules are of primary importance in stabilizing higher order collagen structures. Backbone and side chain dynamics of collagen in parchments were compared to those of gelatin based on the 13C dipolar-dephased experiments. Carbonyl 13C chemical shift anisotropies were measured to deduce the geometry of the collagen backbone motion. Unlike previous studies, we found that the collagen backbone motion is similar to that found in other proteins and occurs primarily via small-angle librations about internal bond directions.  相似文献   

12.
Experimental determination of fluxes by (13)C-tracers relies on detection of (13)C-patterns in metabolites or by-products. In the field of (13)C metabolic flux analysis, the most recent developments point toward recording labeling patterns by liquid chromatography (LC)-mass spectrometry (MS)/MS directly in intermediates in central carbon metabolism (CCM) to increase temporal resolution. Surprisingly, the flux studies published so far with LC-MS measurements were based on intact metabolic intermediates-thus neglected the potential benefits of using positional information to improve flux estimation. For the first time, we exploit collisional fragmentation to obtain more fine-grained (13)C-data on intermediates of CCM and investigate their impact in (13)C metabolic flux analysis. For the case study of Bacillus subtilis grown in mineral medium with (13)C-labeled glucose, we compare the flux estimates obtained by iterative isotopologue balancing of (13)C-data obtained either by LC-MS/MS for solely intact intermediates or LC-MS/MS for intact and fragmented intermediates of CCM. We show that with LC-MS/MS data, fragment information leads to more precise estimates of fluxes in pentose phosphate pathway, glycolysis, and to the tricarboxylic acid cycle. Additionally, we present an efficient analytical strategy to rapidly acquire large sets of (13)C-patterns by tandem MS, and an in-depth analysis of the collisional fragmentation of primary intermediates. In the future, this catalogue will enable comprehensive in silico calculability analyses to identify the most sensitive measurements and direct experimental design.  相似文献   

13.
Quantification of water transport in plants with NMR imaging   总被引:1,自引:0,他引:1  
A new nuclear magnetic resonance imaging (NMRi) method is described to calculate the characteristics of water transport in plant stems. Here, dynamic NMRi is used as a non-invasive technique to record the distribution of displacements of protons for each pixel in the NMR image. Using the NMR-signal of the stationary water in a reference tube for calibration, the following characteristics can be calculated per pixel without advance knowledge of the flow-profile in that pixel: the amount of stationary water, the amount of flowing water, the cross-sectional area of flow, the average linear flow velocity of the flowing water, and the volume flow. The accuracy of the method is demonstrated with a stem segment of a chrysanthemum flower by comparing the volume flow, measured with NMR, with the actual volumetric uptake, measured with a balance. NMR measurements corresponded to the balance uptake measurements with a rms error of 0.11 mg s(-1) in a range of 0 to 1.8 mg s(-1). Local changes in flow characteristics of individual voxels of a sample (e.g. intact plant) can be studied as a function of time and of any conceivable changes the sample experiences on a time-scale, longer than the measurement time of a complete set of pixel-propagators (17 min).  相似文献   

14.
The challenging nature of studies of membrane proteins has made it difficult to determine the molecular mechanism of transmembrane signaling. For the bacterial chemoreceptor family, there are crystal structures of the internal and external domains, structural models of the transmembrane domain, and evidence for subtle ligand-induced conformational changes, but the signaling mechanism remains controversial. We have used a novel site-directed solid-state NMR distance measurement approach, using (13)C(19)F REDOR, to measure a ligand-induced change of 1.0 +/- 0.3 A in the distance between helices alpha 1 and alpha 4 of the ligand-binding domain in the intact, membrane-bound serine receptor. This distance change is shown not to be due to motion of the side chain and thus is due to motion of either the alpha 1 or the alpha 4 helix. Additional distance measurements can be used to determine the type of backbone motion and to follow it to the cytoplasm, to test and refine current proposals for the mechanism of transmembrane signaling. This is a promising general method for high-resolution measurements of local structure in intact, membrane-bound proteins.  相似文献   

15.
Measurements of the kinetics of hyperpolarized (13)C label exchange between [1-(13)C]pyruvate and lactate in suspensions of intact and lysed murine lymphoma cells, and in cells in which lactate dehydrogenase expression had been modulated by inhibition of the PI3K pathway, were used to determine quantitatively the role of enzyme activity and membrane transport in controlling isotope flux. Both steps were shown to share in the control of isotope flux in these cells. The kinetics of label exchange were well described by a kinetic model that employed rate constants for the lactate dehydrogenase reaction that had been determined previously from steady state kinetic studies. The enzyme showed pyruvate inhibition in steady state kinetic measurements, which the kinetic model predicted should also be observed in the isotope exchange measurements. However, no such pyruvate inhibition was observed in either intact cells or cell lysates and this could be explained by the much higher enzyme concentrations present in the isotope exchange experiments. The kinetic analysis presented here shows how lactate dehydrogenase activity can be determined from the isotope exchange measurements. The kinetic model should be useful for modeling the exchange reaction in vivo, particularly as this technique progresses to the clinic.  相似文献   

16.
The possible structure of lipophorin in insect blood (hemolymph) was investigated by differential scanning calorimetry (DSC) and 13C nuclear magnetic relaxation studies. The DSC heating curves of intact lipophorins showed endothermic peaks between -3 and 40 degrees C for lipophorins which contain hydrocarbons, whereas no such peaks were observed for lipophorins which do not contain this lipid. Hydrocarbon fractions isolated from the lipophorins showed endothermic peaks similar to those obtained from intact lipophorin in terms of the transition temperatures, the shapes, and the enthalpy changes. 13C spin lattice relaxation times of the (CH2)n resonance of hydrocarbons of intact lipophorin were measured as a function of temperature and revealed that the motions of hydrocarbon chains changed coincidentally with the onset and offset of phase transition. These data suggest the presence of a hydrocarbon-rich region within the lipophorin particles.  相似文献   

17.
Solid-state (13)C NMR measurements of intact soybean leaves labeled by (13)CO(2) (at subambient concentrations) show that excess glycine from the photorespiratory C(2) cycle (i.e. glycine not part of the production of glycerate in support of photosynthesis) is either fully decarboxylated or inserted as (13)C-labeled glycyl residues in proteins. This (13)C incorporation in leaf protein, which is uniformly (15)N labeled by (15)NH(4)(15)NO(3), occurs as soon as 2 min after the start of (13)CO(2) labeling. In those leaves with lower levels of available nitrogen (as measured by leaf nitrate and glutamine-glutamate concentrations), the excess glycine is used primarily as glycyl residues in protein.  相似文献   

18.
Chinese hamster ovary cells treated with the glutathione oxidant diamide formed large amounts of lipid peroxide. This effect was greater at 18 °C than at 0 °C and was apparently not a direct consequence of glutathione oxidation because it occurred at concentrations well above those needed to oxidize cellular glutathione. The reagent was toxic at 18 °C but not at 0 °C and caused extensive blebbing in 50% of the treated cells at this temperature. Electron microscopic examination of rabbit polymorphonuclear neutrophils disclosed that diamide caused formation of a large, organelle-free bleb and a band of fibrogranular material. It also inhibited phagocytosis of yeast particles by these cells. These effects were reversed when the cells were incubated at 37 °C in the absence of diamide. The results indicate that, although diamide is relatively specific for glutathione under some circumstances, effects observed with intact cells under most experimental conditions may reflect processes other than oxidation of endogenous glutathione.  相似文献   

19.
A previous 13C NMR technique (Malloy, C. R., Sherry, A.D., and Jeffrey, F.M.H. (1987) FEBS Lett. 212, 58-62) for measuring the relative flux of molecules through the oxidative versus anaplerotic pathways involving the citric acid cycle of the rat heart has been extended to include a complete analysis of the entire glutamate 13C spectrum. Although still simple in practice, this more sophisticated model allows an evaluation of 13C fractional enrichment of molecules entering both the oxidative and anaplerotic pathways under steady-state conditions. The method was used to analyze 13C NMR spectra of intact hearts or their acid extracts during utilization of 13C-enriched pyruvate, propionate, acetate, or various combinations thereof. [2-13C]Pyruvate was used to prove that steady-state flux of pyruvate through pyruvate carboxylase is significant during co-perfusion of pyruvate and acetate, and we demonstrate for the first time that a nine-line 13C multiplet may be detected in an intact, beating heart. Acetate or pyruvate alone provided about 86% of the acetyl-CoA; in combination, about 65% of the acetyl-CoA was derived from acetate, about 30% was derived from pyruvate, and the remainder from endogenous sources. Propionate reduced the contribution of exogenous acetate to acetyl-CoA to 77% and also reduced the oxidation of endogenous substrates. Equations are presented which allow this same analysis on multiply labeled substrates, making this technique extremely powerful for the evaluation of substrate selection and relative metabolic flux through anaplerotic and oxidative pathways in the intact heart.  相似文献   

20.
The 13C epsilon NMR signal of methionine sulfoxide is 22.6 ppm downfield from that of methionine. This affords a method by which the extent of methionine oxidation can be determined in intact protein. We demonstrate the utility of this approach with beta-galactosidase enriched with 13C in its methionine methyls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号