首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the chemotaxis pathway of the bacterium Escherichia coli, signals are carried from a cluster of receptors to the flagellar motors by the diffusion of the protein CheY-phosphate (CheYp) through the cytoplasm. A second protein, CheZ, which promotes dephosphorylation of CheYp, partially colocalizes with receptors in the plasma membrane. CheZ is normally dimeric in solution but has been suggested to associate into highly active oligomers in the presence of CheYp. A model is presented here and supported by Brownian dynamics simulations, which accounts for these and other experimental data: A minority component of the receptor cluster (dimers of CheAshort) nucleates CheZ oligomerization and CheZ molecules move from the cytoplasm to a bound state at the receptor cluster depending on the current level of cellular stimulation. The corresponding simulations suggest that dynamic CheZ localization will sharpen cellular responses to chemoeffectors, increase the range of detectable ligand concentrations, and make adaptation more precise and robust. The localization and activation of CheZ constitute a negative feedback loop that provides a second tier of adaptation to the system. Subtle adjustments of this kind are likely to be found in many other signaling pathways.  相似文献   

2.
Most cellular processes depend on intracellular locations and random collisions of individual protein molecules. To model these processes, we developed algorithms to simulate the diffusion, membrane interactions, and reactions of individual molecules, and implemented these in the Smoldyn program. Compared to the popular MCell and ChemCell simulators, we found that Smoldyn was in many cases more accurate, more computationally efficient, and easier to use. Using Smoldyn, we modeled pheromone response system signaling among yeast cells of opposite mating type. This model showed that secreted Bar1 protease might help a cell identify the fittest mating partner by sharpening the pheromone concentration gradient. This model involved about 200,000 protein molecules, about 7000 cubic microns of volume, and about 75 minutes of simulated time; it took about 10 hours to run. Over the next several years, as faster computers become available, Smoldyn will allow researchers to model and explore systems the size of entire bacterial and smaller eukaryotic cells.  相似文献   

3.
M Nishiyama  Y Sowa 《Biophysical journal》2012,102(8):1872-1880
The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment.  相似文献   

4.
Coordination of flagella on filamentous cells of Escherichia coli.   总被引:12,自引:7,他引:5  
Video techniques were used to study the coordination of different flagella on single filamentous cells of Escherichia coli. Filamentous, nonseptate cells were produced by introducing a cell division mutation into a strain that was polyhook but otherwise wild type for chemotaxis. Markers for its flagellar motors (ordinary polyhook cells that had been fixed with glutaraldehyde) were attached with antihook antibodies. The markers were driven alternately clockwise and counterclockwise, at angular velocities comparable to those observed when wild-type cells are tethered to glass. The directions of rotation of different markers on the same cell were not correlated; reversals of the flagellar motors occurred asynchronously. The bias of the motors (the fraction of time spent spinning counterclockwise) changed with time. Variations in bias were correlated, provided that the motors were within a few micrometers of one another. Thus, although the directions of rotation of flagellar motors are not controlled by a common intracellular signal, their biases are. This signal appears to have a limited range.  相似文献   

5.
An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication between the base and the tip and possibly indicating that cells contain some mechanism for measuring flagellar length. Although it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback signals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length dependence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate that has been observed in quantitative imaging studies.  相似文献   

6.
Mechanical limits of bacterial flagellar motors probed by electrorotation.   总被引:3,自引:3,他引:0  
We used the technique of electrorotation to apply steadily increasing external torque to tethered cells of the bacterium Escherichia coli while continuously recording the speed of cell rotation. We found that the bacterial flagellar motor generates constant torque when rotating forward at low speeds and constant but considerably higher torque when rotating backward. At intermediate torques, the motor stalls. The torque-speed relationship is the same in both directional modes of switching motors. Motors forced backward usually break, either suddenly and irreversibly or progressively. Motors broken progressively rotate predominantly at integral multiples of a unitary speed during the course of both breaking and subsequent recovery, as expected if progressive breaking affects individual torque-generating units. Torque is reduced by the same factor at all speeds in partially broken motors, implying that the torque-speed relationship is a property of the individual torque-generating units.  相似文献   

7.
We recently developed a stochastic-based program that allows individual molecules in a cell signalling pathway to be simulated. This program has now been used to model the Tar complex, a multimeric signalling complex employed by coliform bacteria. This complex acts as a solid-state computational cassette, integrating and disseminating information on the presence of attractants and repellents in the environment of the bacterium. In our model, the Tar complex exists in one of two conformations which differ in the rate at which they generate labile phosphate groups and hence signal to the flagellar motor. Individual inputs to the complex (aspartate binding, methylation at different sites, binding of CheB, CheR and CheY) are represented as binary flags, and each combination of flags confers a different free energy to the two conformations. Binding and catalysis by the complex are performed stochastically according to the complete set of known reactions allowing the swimming performance of the bacterium to be predicted.The assumption of two conformational states together with the use of free energy values allows us to bring together seemingly unrelated experimental parameters. Because of thermodynamic constraints, we find that the binding affinity for aspartate is linked to changes in phosphorylation activity. We estimate the pattern of Tar methylation and effective affinity constant of receptors over a range of aspartate levels. We also obtain evidence that both the methylating and demethylating enzymes must operate exclusively on one or other of the two conformations, and that sites of methylation of the complex are occupied in sequential order rather than independently. Detailed analysis of the response to aspartate reveals several quantitative discrepancies between simulated and experimental data which indicate areas for future research.  相似文献   

8.
The dynamic switching of the bacterial flagellar motor regulates cell motility in bacterial chemotaxis. It has been reported under physiological conditions that the switching bias of the flagellar motor undergoes large temporal fluctuations, which reflects noise propagating in the chemotactic signaling network. On the other hand, nongenetic heterogeneity is also observed in flagellar motor switching, as a large group of switching motors show different switching bias and frequency under the same physiological condition. In this work, we present simultaneous measurement of groups of Escherichia coli flagellar motor switching and compare them to long time recording of single switching motors. Consistent with previous studies, we observed temporal fluctuations in switching bias in long time recording experiments. However, the variability in switching bias at the populational level showed much higher volatility than its temporal fluctuation. These results suggested stable individuality in E. coli motor switching. We speculate that uneven expression of key regulatory proteins with amplification by the ultrasensitive response of the motor can account for the observed populational heterogeneity and temporal fluctuations.  相似文献   

9.
The dynamic switching of the bacterial flagellar motor regulates cell motility in bacterial chemotaxis. It has been reported under physiological conditions that the switching bias of the flagellar motor undergoes large temporal fluctuations, which reflects noise propagating in the chemotactic signaling network. On the other hand, nongenetic heterogeneity is also observed in flagellar motor switching, as a large group of switching motors show different switching bias and frequency under the same physiological condition. In this work, we present simultaneous measurement of groups of Escherichia coli flagellar motor switching and compare them to long time recording of single switching motors. Consistent with previous studies, we observed temporal fluctuations in switching bias in long time recording experiments. However, the variability in switching bias at the populational level showed much higher volatility than its temporal fluctuation. These results suggested stable individuality in E. coli motor switching. We speculate that uneven expression of key regulatory proteins with amplification by the ultrasensitive response of the motor can account for the observed populational heterogeneity and temporal fluctuations.  相似文献   

10.
An Escherichia coli cell transduces extracellular stimuli sensed by chemoreceptors to the state of an intracellular signal molecule, which regulates the switching of the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) and from CW back to CCW. Here, we performed high-speed imaging of flagellar motor rotation and show that the switching of two different motors on a cell is controlled coordinatedly by an intracellular signal protein, phosphorylated CheY (CheY-P). The switching is highly coordinated with a subsecond delay between motors in clear correlation with the distance of each motor from the chemoreceptor patch localized at a cell pole, which would be explained by the diffusive motion of CheY-P molecules in the cell. The coordinated switching becomes disordered by the expression of a constitutively active CheY mutant that mimics the CW-rotation stimulating function. The coordinated switching requires CheZ, which is the phosphatase for CheY-P. Our results suggest that a transient increase and decrease in the concentration of CheY-P caused by a spontaneous burst of its production by the chemoreceptor patch followed by its dephosphorylation by CheZ, which is probably a wavelike propagation in a subsecond timescale, triggers and regulates the coordinated switching of flagellar motors.  相似文献   

11.
Chemotaxis is the process by which cells sense changes in their chemical environment and move towards more favorable conditions. In divergent species of bacteria, the chemotaxis proteins localize to the poles of the cell and information is transferred to the flagellar motors through the phosphorylation of a soluble protein CheY. Using mathematical models and computer simulation, we demonstrate that phosphatase localization controls the spatial distribution of CheY-P in the cytosol at steady state. Remarkably, the location of the phosphatase is not conserved in different species of bacteria. The sole phosphatase in Escherichia coli is localized with the signaling complex and the primary phosphatase in Bacillus subtilis is localized at the flagellar motors. Despite these alternate pathway structures, both designs minimize differences in the concentration of phosphorylated CheY proximal to each motor unlike a design where the phosphatase is freely diffusing in the cytoplasm. These results suggest that motile bacteria have evolved alternate mechanisms to ensure that each motor receives roughly the same signal at steady state. The hypothesis is that complex networks have evolved to satisfy certain design principles in order to function robustly. While specific mechanisms are different, the underlying principles of phosphatase localization in E. coli and B. subtilis appear to be the same.  相似文献   

12.
Bacterial chemotaxis is based on modulation of the probability to switch the direction of flagellar rotation. Responses to many stimuli are transduced by a two-component system via reversible phosphorylation of CheY, a small cytoplasmic protein that directly interacts with the switch complex at the flagellar motor. We found that the chemorepellents indole and benzoate induce motor switching in Escherichia coli cells with a disabled phosphorylation cascade. This phosphorylation-independent chemoresponse is explained by reversible inhibition of fumarase by indole or benzoate which leads to an increased level of cellular fumarate, a compound involved in motor switching for bacteria and archaea. Genetic deletion of fumarase increased the intracellular concentration of fumarate and enhanced the switching frequency of the flagellar motors irrespective of the presence or absence of the phosphorylation cascade. These correlations provide evidence for fumarate-dependent metabolic signal transduction in bacterial chemosensing.  相似文献   

13.
We prepared fusions of yellow fluorescent protein [the YFP variant of green fluorescent protein (GFP)] with the cytoplasmic chemotaxis proteins CheY, CheZ and CheA and the flagellar motor protein FliM, and studied their localization in wild-type and mutant cells of Escherichia coli. All but the CheA fusions were functional. The cytoplasmic proteins CheY, CheZ and CheA tended to cluster at the cell poles in a manner similar to that observed earlier for methyl-accepting chemotaxis proteins (MCPs), but only if MCPs were present. Co-localization of CheY and CheZ with MCPs was CheA dependent, and co-localization of CheA with MCPs was CheW dependent, as expected. Co-localization with MCPs was confirmed by immunofluorescence using an anti-MCP primary antibody. The motor protein FliM appeared as discrete spots on the sides of the cell. These were seen in wild-type cells and in a fliN mutant, but not in flhC or fliG mutants. Co-localization with flagellar structures was confirmed by immunofluorescence using an antihook primary antibody. Surprisingly, we did not observe co-localization of CheY with motors, even under conditions in which cells tumbled.  相似文献   

14.
Using self-trapped Escherichia coli bacteria that have intact flagellar bundles on glass surfaces, we study statistical fluctuations of cell-body rotation in a steady (unstimulated) state. These fluctuations underline direction randomization of bacterial swimming trajectories and plays a fundamental role in bacterial chemotaxis. A parallel study is also conducted using a classical rotation assay in which cell-body rotation is driven by a single flagellar motor. These investigations allow us to draw the important conclusion that during periods of counterclockwise motor rotation, which contributes to a run, all flagellar motors are strongly correlated, but during the clockwise period, which contributes to a tumble, individual motors are uncorrelated in long times. Our observation is consistent with the physical picture that formation and maintenance of a coherent flagellar bundle is provided by a single dominant flagellum in the bundle.  相似文献   

15.
The bacterial flagellar motor powers the rotation that propels the swimming bacteria. Rotational torque is generated by harnessing the flow of ions through ion channels known as stators which couple the energy from the ion gradient across the inner membrane to rotation of the rotor. Here, we used error‐prone PCR to introduce single point mutations into the sodium‐powered Vibrio alginolyticus/Escherichia coli chimeric stator PotB and selected for motors that exhibited motility in the presence of the sodium‐channel inhibitor phenamil. We found single mutations that enable motility under phenamil occurred at two sites: (i) the transmembrane domain of PotB, corresponding to the TM region of the PomB stator from V. alginolyticus and (ii) near the peptidoglycan binding region that corresponds to the C‐terminal region of the MotB stator from E. coli. Single cell rotation assays confirmed that individual flagellar motors could rotate in up to 100 µM phenamil. Using phylogenetic logistic regression, we found correlation between natural residue variation and ion source at positions corresponding to PotB F22Y, but not at other sites. Our results demonstrate that it is not only the pore region of the stator that moderates motility in the presence of ion‐channel blockers.  相似文献   

16.
Bacteria can be propelled in liquids by flagellar filaments that are attached to and moved by flagellar motors. These motors are rotary nanomachines that use the electrochemical potential from ion gradients. The motor can spin in both directions with specific proteins regulating the direction in response to chemotactic stimuli. Here we investigated the structure of flagellar motors of Borrelia spirochetes, the causative agents of Lyme disease in humans. We revealed the structure of the motor complex at 4.6-nm resolution by sub-volume averaging of cryo-electron tomograms and subsequently imposing rotational symmetry. This allowed direct visualisation of individual motor components, the connection between the stator and the peptidoglycan as well as filamentous linkers between the stator and the rod. Two different motor assemblies seem to co-exist at a single bacterial pole. While most motors were completely assembled, a smaller fraction appeared to lack part of the C-ring, which plays a role in protein export and switching the directionality of rotation. Our data suggest a novel mechanism that bacteria may use to control the direction of movement.  相似文献   

17.
Bacterial communication via quorum sensing has been extensively investigated in recent years. Bacteria communicate in a complex manner through the production, release, and reception of diffusible low molecular weight chemical signaling molecules. Much work has focused on understanding the basic mechanisms of quorum sensing. As more and more bacteria grow resistant to conventional antibiotics, the development of drugs that do not kill bacteria but instead interrupt their communication is of increasing interest. This study presents a method for analyzing bacterial communication by investigating single cell responses. Most conventional analysis methods for bacterial communication are based on the averaged response from many bacteria, masking how individual cells respond to their immediate environment. We applied a fiber-optic microarray to record cellular communication from single cells. Single cell quorum sensing systems have previously been employed, but the highly ordered array reported here is an improvement because it allows us to simultaneously investigate cellular communication in many different environments with known cellular densities and configurations. We employed this method to detect how genes under quorum regulation are induced or repressed over time on the single cell level and to determine whether cellular density and configuration are indicative of the single cell temporal patterns of gene expression.  相似文献   

18.
CheZ catalyzes the dephosphorylation of the response regulator CheY in the two-component regulatory system that mediates chemotaxis in Escherichia coli. CheZ is a homodimer with two active sites for dephosphorylation. To gain insight into cellular mechanisms for the precise regulation of intracellular phosphorylated CheY (CheYp) levels, we evaluated the kinetic properties of CheZ. The steady state rate of CheZ-mediated dephosphorylation of CheYp displayed marked sigmoidicity with respect to CheYp concentration and a k(cat) of 4.9 s(-1). In contrast, the gain of function mutant CheZ-I21T with an amino acid substitution far from the active site gave hyperbolic kinetics and required far lower CheYp for half-saturation but had a similar k(cat) value as the wild type enzyme. Stopped flow fluorescence measurements demonstrated a 6-fold faster CheZ/CheYp association rate for CheZ-I21T (k(assoc) = 3.4 x 10(7) M (-1) s(-1)) relative to wild type CheZ (k(assoc) = 5.6 x 10(6) M(-1) s(-1)). Dissociation of the CheZ.CheYBeF(3) complex was slow for both wild type CheZ (k(dissoc) = 0.040 s(-1)) and CheZ-I21T (k(dissoc) = 0.023 s(-1)) and, when taken with the k(assoc) values, implied K(d) values of 7.1 and 0.68 nm, respectively. However, comparison of the k(dissoc) and k(cat) values implied that CheZ and CheYp are not at binding equilibrium during catalysis and that once CheYp binds, it is almost always dephosphorylated. The rate constants were collated to formulate a kinetic model for CheZ-mediated dephosphorylation that includes autoregulation by CheYp and allowed prediction of CheZ activities at CheZ and CheYp concentrations likely to be present in cells.  相似文献   

19.
Bacterial cells in aquatic environments are able to reach or stay near nutrient patches by using motility. Motility is usually attained by rotating flagellar motors that are energized by electrochemical potential of H+ or Na+. In this paper, the ion specificity for flagellar rotation of two marine isolates Halomonas spp. strains US172 and US201 was investigated. Both isolates require sodium for growth and possess a respiratory-driven primary sodium pump. They are motile because of lateral flagella regardless of the presence of sodium ions. Their swimming speed under various concentrations of sodium ions with and without carbonylcyanide m-chlorophenylhydrazone, a proton conductor, and with and without phenamil, a specific inhibitor for the sodium-driven flagellar motors, was examined. The effect of carbonylcyanide m-chlorophenylhydrazone on the transmembrane proton gradient was also determined. Our results showed that the flagellar motors of the Halomonas strains were energized by both H+ and Na+ in one cell. The bimodal nature of Halomonas spp. motility with respect to the driving energy source may reflect ecophysiological versatility to adapt to a wide range of salt conditions of the marine environment.  相似文献   

20.
Bacterial flagellar motors are intricate nanomachines in which the stator units and rotor component FliM may be dynamically exchanged during function. Similar to other bacterial species, the gammaproteobacterium Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system along with a corresponding stator unit. Expression of the secondary system occurs during planktonic growth in complex media and leads to the formation of a subpopulation with one or more additional flagella at random positions in addition to the primary polar system. We used physiological and phenotypic characterizations of defined mutants in concert with fluorescent microscopy on labelled components of the two different systems, the stator proteins PomB and MotB, the rotor components FliM(1) and FliM(2), and the auxiliary motor components MotX and MotY, to determine localization, function and dynamics of the proteins in the flagellar motors. The results demonstrate that the polar flagellum is driven by a Na(+)-dependent FliM(1)/PomAB/MotX/MotY flagellar motor while the secondary system is rotated by a H(+)-dependent FliM(2)/MotAB motor. The components were highly specific for their corresponding motor and are unlikely to be extensively swapped or shared between the two flagellar systems under planktonic conditions. The results have implications for both specificity and dynamics of flagellar motor components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号