首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
嗜热菌中,蛋白质存在Ala替换Gly以及Arg替换Lys的趋势。为了提高紫色色杆菌来源的苯丙氨酸羟化酶的热稳定性,将该酶中所有Gly突变成Ala,Lys突变成Arg,筛选获得热稳定性提高的突变体,并进行组合突变,对突变酶的酶学性质进行研究。结果表明,突变酶K94R和G221A在50℃的半衰期分别为26.2 min、16.8 min,比原始酶(9.0 min)分别提高了1.9倍、0.9倍,同时组合突变酶K94R/G221A在50℃处理1 h后仍保留65.6%的酶活,比原始酶(8.6%)高出6.6倍。圆二色谱结果显示原始酶和突变酶K94R、G221A及K94R/G221A的T_m值分别为51.5℃、53.8℃、53.1℃和54.8℃。蛋白三维结构模拟推测突变体热稳定性提高机理为:突变体K94R中Arg94与Ile95之间形成额外氢键,稳定其所在的柔性区域;突变体G221A中Ala221与Leu281产生疏水作用,稳定酶分子C-端柔性区。该研究结果为蛋白质热稳定性改造提供了参考,也为苯丙氨酸羟化酶在功能性食品领域的应用奠定了基础。  相似文献   

2.
Antibody 10F11 catalyzes the retro-Diels-Alder reaction of the bicyclic prodrug 1 releasing HNO and anthracene 4 (kcat/kuncat=2500). Earlier X-ray crystal structures of Fab 10F11 showed that tryptophan H104 at the bottom of the binding pocket interacts by pi-stacking with the aromatic ring of the substrate. Antibody 10F11 was expressed as a chimeric Fab and subjected to site-directed mutagenesis. Expression was improved by substituting a serine for a phenylalanine residue on the Fv-domain surface. Nine active-site mutants were then prepared including replacements at TrpH104, PheH101 and SerH100. Catalysis depends mainly on TrpH104 and PheH101. Catalysis is most likely caused by a combination of shape complementarity and specific electronic interactions between transition state and the aromatic residue H104. Medium and de-solvation effects have no effect on the reaction rate. Catalysis was improved to (kcat/kuncat=6300) by substituting phenylalanine for LeuL101 to indirectly enhance pi-stacking between transition state and TrpH104.  相似文献   

3.
A three-dimensional (3D) molecular model of the antigen-combining site of a bovine anti-testosterone monoclonal antibody has been constructed. In the model, the CDRs, and a single heavy chain framework region residue (Trp47), associate to form a hydrophobic cavity large enough to accommodate a single molecule of testosterone. Tyr97 of CDR-H3 lies at the bottom of the cavity with its hydroxyl group exposed to solvent. Using the model and data from binding studies, we predicted that the cavity forms the antibody's paratope and on binding testosterone a hydrogen bond is formed between Tyr97 of CDR-H3 and the hydroxyl group on the D-ring of testosterone. This prediction has subsequently been tested by site-directed mutagenesis. An antibody with phenylalanine in place of tyrosine at position 97 in CDR-H3 has its affinity reduced by approximately 800 fold. The reduction in binding energy associated with the reduced affinity has been calculated to be 3.9 kcal/mol which is within the range (0.5-4.0 kcal/mol) expected for the loss of a single hydrogen bond. The model has been used to suggest ways of increasing the antibody's affinity for testosterone.  相似文献   

4.
Four anti-idiotopic mAB, 107, MB, AI, and AD8, react with mouse hybridoma protein 36-65 specific for the hapten p-azophenylarsonate. The four antiidiotypic antibodies do not react with hybridoma protein 36-71, a somatically mutated variant of 36-65 whose H and L chain V region sequence differs at 19 amino acid positions. To determine which regions of 36-65 are important for the interaction with each of the four anti-idiotypic antibodies, variants of 36-65 containing one or more of the 36-71 substitutions were generated by oligonucleotide-directed mutagenesis of the rearranged 36-65 H chain V region gene, followed by expression of mutant proteins containing either the 36-65 or the 36-71 L chain in transfected hybridoma cells. Idiotypic characterization of the mutant proteins showed that reactivity correlates with the 36-65 H chain, but some contributions from the 36-65 L chain come into play. In the 36-65 H chain V region, idiotopes were mapped to the first and third complementarity-determining regions for anti-idiotypic antibodies 107, MB, and AI, and to all three complementarity-determining regions for anti-idiotypic antibody AD8. The binding of all four anti-idiotypic antibodies to hybridoma protein 36-65 was hapten inhibitable. However, a comparison between the effect of individual 36-71 substitutions on idiotope expression and their effect on Ag-binding affinity suggests that none of the four anti-idiotypic antibodies bodies mimics the structure of Ag.  相似文献   

5.
Streptavidin provides an effective receptor for biotinylated tumoricidal molecules, including radionuclides, when conjugated to an antitumor antibody and administered systemically. Ideally, one would like to administer this bacterial protein to patients repeatedly, so as to maximize the antitumor effect without eliciting an immune response. Therefore, we attempted to reduce the antigenicity of streptavidin by mutating surface residues capable of forming high energy ionic or hydrophobic interactions. A crystallographic image of streptavidin was examined to identify residues with solvent-exposed side chains and residues critical to streptavidin's structure or function, and to define loops. Mutations were incorporated cumulatively into the protein sequence. Mutants were screened for tetramer formation, biotin dissociation, and reduced immunoreactivity with pooled patient sera. Patient antisera recognized one minor continuous epitope with binding locus at residue E101 and one major discontinuous epitope involving amino acid residues E51 and Y83. Mutation of residues E51, Y83, R53, and E116 reduced reactivity with patient sera to <10% that of streptavidin, but these mutations were no less antigenic in rabbits. Mutant 37, with 10 amino acid substitutions, was only 20% as antigenic as streptavidin. Rabbits immunized with either streptavidin or mutant 37 failed to recognize the alternative antigen. Biotin dissociated from mutant 37 four to five times faster than from streptavidin. Residues were identified with previously undescribed impact on biotin binding and protein folding. Thus, substitution of charged, aromatic, or large hydrophobic residues on the surface of streptavidin with smaller neutral residues reduced the molecule's ability to elicit an immune response in rabbits.  相似文献   

6.
Alteration of Asp181 in a nylon oligomer-degrading enzyme, 6-aminohexanoate-dimer hydrolase (EII) of Flavobacterium sp. KI72, to Asn and to Glu by site-directed mutagenesis increased Km values toward 6-aminohexanoate-dimer 4 times and 11 times, respectively. Replacement to His or to Lys caused complete loss of the activity (less than 0.02% of the activity of the EII enzyme). Thus, a single amino acid alteration at position 181 of the enzyme drastically affects the catalytic function.  相似文献   

7.
8.
To elucidate the role of sulfhydryl groups in the enzymatic reaction of the aspartase from Escherichia coli, we used site-directed mutagenesis which showed that the enzyme was activated by replacement of Cys-430 with a tryptophan. This mutation produced functional alterations without appreciable structural change: The kcat values became 3-fold at pH 6.0; the Hill coefficient values became higher under both pH conditions; the dependence of enzyme activity on divalent metal ions increased; and hydroxylamine, a good substrate for the wild-type enzyme, proved a poor substrate for the mutant.  相似文献   

9.
Hematopoietic prostaglandin (PG) D synthase (PGDS) is the first identified vertebrate ortholog in the Sigma class of the glutathione S-transferase (GST) family and catalyzes both isomerization of PGH(2) to PGD(2) and conjugation of glutathione to 1-chloro-2, 4-dinitrobenzene. We introduced site-directed mutations of Tyr(8), Arg(14), Trp(104), Lys(112), Tyr(152), Cys(156), Lys(198), and Leu(199), which are presumed to participate in catalysis or PGH(2) substrate binding based on the crystallographic structure. Mutants were analyzed in terms of structure, GST and PGDS activities, and activation of the glutathione thiol group. Of all the mutants, only Y8F, W104I, K112E, and L199F showed minor but substantial differences in their far-UV circular dichroism spectra from the wild-type enzyme. Y8F, R14K/E, and W104I were completely inactive. C156L/Y selectively lost only PGDS activity. K112E reduced GST activity slightly and PGDS activity markedly, whereas K198E caused a selective decrease in PGDS activity and K(m) for glutathione and PGH(2) in the PGDS reaction. No significant changes were observed in the catalytic activities of Y152F and L199F, although their K(m) for glutathione was increased. Using 5,5'-dithiobis(2-nitrobenzoic acid) as an SH-selective agent, we found that only Y8F and R14E/K did not accelerate the reactivity of the glutathione thiol group under the low reactivity condition of pH 5.0. These results indicate that Lys(112), Cys(156), and Lys(198) are involved in the binding of PGH(2); Trp(104) is critical for structural integrity of the catalytic center for GST and PGDS activities; and Tyr(8) and Arg(14) are essential for activation of the thiol group of glutathione.  相似文献   

10.
11.
Methylamine dehydrogenase (MADH) possesses an alpha(2)beta(2) subunit structure with each smaller beta subunit possessing a tryptophan tryptophylquinone (TTQ) prosthetic group. Phe(55) of the alpha subunit is located where the substrate channel from the enzyme surface opens into the active site. Site-directed mutagenesis studies have revealed several roles for this residue in catalysis and electron transfer (ET) by MADH. Site-directed mutagenesis of either alpha Phe(55) or beta Ile(107) (a residue in the beta subunit which interacts with alpha Phe(55)) converts MADH into enzymes with specificities for long-chain amines, amylamine or propylamine. Mutation of alpha Phe(55) also affects monovalent cation binding to the active site. alpha F55A MADH exhibits an increased K(d) for cation-dependent spectral changes and a decreased K(d) for cation-dependent stimulation of the rate of gated ET from N-quinol MADH to amicyanin. These results demonstrate that alpha Phe(55) is able to directly participate in a wide range of biochemical processes not typically observed for a phenylalanine residue.  相似文献   

12.
In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotidesKren, B.T. et al. (1998)Nat. Med. 4, 285–290Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric RNA/DNA oligonucleotideKren, B.T. et al. (1997)Hepatology 25, 1462–1468  相似文献   

13.
A comparison of laccase sequences highlighted the presence of a C-terminal extension of sixteen amino acids in POXA1b laccase – that represents the most thermostable isoenzyme among Pleurotus ostreatus laccases and exhibits a notable stability at alkaline pH (t1/2 at pH 10 = 30 days) – whereas this tail is missing in the other analysed laccases from basidiomycetes. Site-directed mutagenesis experiments allowed us to demonstrate a role of the C-terminal tail of POXA1b in affecting its catalytic and stability properties. The truncated mutants lose the high stability at pH 10, while they show an increased stability at pH 5. The effect of substituting the residue Asp205 of POXA1b with an arginine was also analysed in the mutant POXA1bD205R. Following the mutation POXA1bD205R, a remarkable worsening of catalytic properties along with a decrease of substrate affinity and of enzyme stability were found. It was demonstrated that introducing Arg205 mutation in a highly conserved region perturbs the structural local environment in POXA1b, leading to a large rearrangement of the enzyme structure. Hence, a single substitution in the binding site introduces a local conformational change that not only leads to very different catalytic properties, but can also significantly destabilize the protein.  相似文献   

14.
精氨酸脱亚胺酶(ADI)是一种针对精氨酸缺陷型癌症(如:肝癌、黑素瘤)的新药,目前处于临床三期试验。文中通过定点突变技术分析了精氨酸脱亚胺酶的特定氨基酸位点对酶活力的影响机制。针对已报道的关键氨基酸残基A128、H404、I410,采用QuikChange法进行定点突变,获得ADI突变株M1(A128T)、M2(H404R)、M3(I410L)和M4(A128T/H404R)。将突变株在大肠杆菌BL21(DE3)中进行重组表达,并对纯化获得的突变蛋白进行酶学性质研究。结果表明,突变位点A128T和H404R对ADI最适pH的提高,生理中性(pH 7.4)条件下的酶活力和稳定性的提高,以及Km值的降低均具有显著的作用。研究结果为阐明ADI的酶活力影响机制和蛋白质的理性改造提供了一定的依据。  相似文献   

15.
We previously reported that the yeast Saccharomyces cerevisiae ISC1 gene (Yer019w), which has homology to the bacterial sphingomyelinase gene, encodes inositol phosphosphingolipids-phospholipase C, Isc1p [Sawai, H., Okamoto, Y., Luberto, C., Mao, C., Bielawska, A., Domae, M., and Hannun, Y. A. (2000) J. Biol. Chem. 275, 39793-39798]. The present study was conducted to determine specific domains in Isc1p required for catalysis. Several amino acid residues are conserved from bacterial sphingomyelinase to mammalian sphingomyelinase and are also found in ISC1. Individual mutation of the conserved E100, N233, and H334 resulted in complete loss of Isc1p activity, suggesting an essential role in catalysis for these amino acid residues. Isc1p also contains a domain (from G162 to S169) with homology to P-loop domains, found in nucleotide-binding proteins. In addition, two amino acid residues from this domain, D163 and K168, are conserved from bacterial to mammalian sphingomyelinases in this "P-loop-like domain". G162, D163, G167, K168, and S169 were replaced individually with alanine using site-directed mutagenesis. D163A and K168A lost activity completely. Mutations in the other three positions rendered enzyme versions with much reduced but detectable activity. The V(max) values for G162A, G167A, and S169A were reduced, compared with wild type, but the K(m) values for G162A, G167A, and S169A were similar to that of wild type, indicating that the substrate binding efficiency was not greatly altered in these mutants and that the P-loop-like domain of ISC1 might be essential in catalysis of Isc1p. Furthermore, the Mg(2+) K(a) constants for G162A, G167, and S169A were higher than that for wild type, suggesting that this P-loop-like domain may be involved in Mg(2+) binding. Although cell lysates from yeast cells overexpressing all mutants similarly bound to phosphatidylserine (PS), an anionic lipid activator of Isc1p, G162A and G167A required 13.3 mol % PS to achieve maximum activity compared to 6.7 mol % for the wild-type enzyme, suggesting that PS might play a role in optimal catalytic efficiency of Isc1p via this P-loop-like domain. This study provides novel insight into a new domain found in Isc1p and related enzymes.  相似文献   

16.
Activated Factor X releases F1.2, a 271-amino acid peptide, from the amino terminus of prothrombin during blood coagulation. A nine-amino acid peptide, C9 (DSDRAIEGR), corresponding to the carboxyl terminus of F1.2 was synthesized and used to produce a monoclonal antibody, TA1 (K(D)) 1.22 x 10(-6) M). To model the TA1 antibody, we entered the sequence information of the cloned TA1 Fv into the antibody modeling program, ABM, which combines homology methods, conformational search procedures, and energy screening and has proved to be a reliable and reproducible antibody modeling method. Using a novel protein fusion procedure, we expressed the C9 peptide fused to the carboxyl terminus of the PENI repressor protein from Bacillus licheniformis in Escherichia coli. We constructed fusion proteins containing alanine substitutions for each amino acid in the C9 epitope. Binding studies, using the C9 alanine mutants and TA1, and spatial constraints predicted by the modeled TA1 binding cleft enabled us to establish a plausible conformation for C9 complexed with TA1. Furthermore, based on binding results of conservative amino acid substitutions in C9 and mutations in the antibody, we were able to refine the complex model and identify antibody mutations that would improve binding affinity.  相似文献   

17.
Lipocalin-type prostaglandin D(2) synthase (L-PGDS) is a highly glycosylated protein found in several body fluids. Elevated L-PGDS levels have been observed in the serum of patients with renal impairment, diabetes mellitus, and hypertension. Recently, we demonstrated the ability of L-PGDS to induce apoptosis in a variety of cell types including epithelial cells, neuronal cells, and vascular smooth muscle cells (VSMCs). The aim of this study was to investigate the effect several site-directed mutations had on L-PGDS-induced apoptosis in order to identify potential sites of regulation. Point mutations created in a glycosylation site (Asn51), a protein kinase C phosphorylation site (Ser106), and the enzymatic active site (Cys65) all inhibited L-PGDS-induced apoptosis as determined by both terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) and caspase3 activity. We also compared the L-PGDS isoforms present in GK rat serum to WKY control serum using two-dimensional gel electrophoresis and observed distinct differences which vanished after PNGase F glycolytic digestion. We conclude that post-translational modification of L-PGDS, by either glycosylation or phosphorylation, enhances its apoptotic activity and inhibits VSMC hyperproliferation and postulate that this process is altered in type 2 diabetes.  相似文献   

18.
E L Ivanov 《Genetika》1991,27(1):5-12
The subject of this review are molecular mechanisms and specificity of mutagenesis induced by apurinic/apyrimidinic (AP) sites representing a characteristic group of so called non-coding DNA lesions. The data available suggest that efficiency and specificity of AP sites-induced mutations depend, primarily, on genome structural organization. This is manifested in existence of DNA sequences highly prone to depurination/depyrimidination as well as in the ability of specific DNA regions to adopt potentially mutagenic conformations. The latter leads to mutations as consequence of AP sites' repair. Secondly, the AP sites-induced mutagenesis depends on functional state of genome, on the ability of replicative/repair cell apparatus to carry out some specific forms of mutagenic DNA repair, in particular, to bypass non-coding DNA lesions under conditions of SOS repair.  相似文献   

19.
20.
Type VII collagen (C7) is a major component of anchoring fibrils, structures that mediate epidermal-dermal adherence. Mutations in gene COL7A1 encoding for C7 cause dystrophic epidermolysis bullosa (DEB), a genetic mechano-bullous disease. The biological consequences of specific COL7A1 mutations and the molecular mechanisms leading to DEB clinical phenotypes are unknown. In an attempt to establish genotype-phenotype relationships, we generated four individual substitution mutations that have been associated with recessive DEB, G2049E, R2063W, G2569R, and G2575R, and purified the recombinant mutant proteins. All mutant proteins were synthesized and secreted as a 290-kDa mutant C7 alpha chain at levels similar to wild type C7. The G2569R and G2575R glycine substitution mutations resulted in mutant C7 with increased sensitivity to protease degradation and decreased ability to form trimers. Limited proteolytic digestion of mutant G2049E and R2063W proteins yielded aberrant fragments and a triple helix with reduced stability. These two mutations next to the 39-amino acid helical interruption hinge region caused local destabilization of the triple-helix that exposed an additional highly sensitive proteolytic site within the region of the mutation. Our functional studies demonstrated that C7 is a potent pro-motility matrix for skin human keratinocyte migration and that this activity resides within the triple helical domain. Furthermore, G2049E and R2063W mutations reduced the ability of C7 to support fibroblast adhesion and keratinocyte migration. We conclude that known recessive DEB C7 mutations perturb critical functions of the C7 molecule and likely contribute to the clinical phenotypes of DEB patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号