首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alternative reproductive phenotypes (ARPs) occur across a wide range of taxa. Most ARPs are conditionally expressed in response to a cue, for example body size, that reliably correlates with the status of the environment: individuals below the (body size) threshold then develop into one morph, and individuals above the threshold develop into the alternative morph. The environmental threshold model provides a theoretical framework to understand the evolution and maintenance of such ARPs, yet no study has examined the underlying fitness functions that are necessary to realize this. Here, we empirically examined fitness functions for the two male morphs of the bulb mite (Rhizoglyphus robini). Fitness functions were derived in relation to male size for solitary males and in relation to female size under competition. In both cases, the fitness functions of the two morphs intersected, and the resulting fitness trade-offs may play a role in the maintenance of this male dimorphism. We furthermore found that competition was strongest between males of the same morph, suggesting that fitness trade-off in relation to male size may persist under competition. Our results are a first step towards unravelling fitness functions of ARPs that are environmentally cued threshold traits, which is essential for understanding their maintenance and in explaining the response to selection against alternative morphs.  相似文献   

2.
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans‐species evolution).  相似文献   

3.
Alternative reproductive phenotypes (ARPs) represent discrete morphological variation within a single sex; as such ARPs are an excellent study system to investigate the maintenance of phenotypic variation. ARPs are traditionally modelled as a mixture of pure strategies or as a conditional strategy. Most male dimorphisms are controlled by a conditional strategy, where males develop into a particular phenotype as a result of their condition which allows them to reach a certain threshold. Individuals that are unable to reach the threshold of a conditional strategy are considered to ‘make the best of a bad job’; however, these individuals can have their own fitness merits. Given these fitness merits, condition-dependent selection alone is not sufficient to maintain a conditionally determined male dimorphism and other mechanisms, most likely frequency-dependent selection, are required. We studied in an experiment, the male dimorphic bulb mite Rhizoglyphus robini—where males are fighters that can kill other males or benign scramblers—to assess the strength of frequency-dependent survival in a high and low-quality environment. We found that male survival was frequency-dependent in the high-quality environment but not the low-quality environment. In the high-quality environment the survival curves of the two morphs crossed but the direction of frequency-dependence was opposite to what theory predicts.  相似文献   

4.
Hymenopteran species in which sex is determined through a haplo‐diploid mechanism known as complementary sex determination (CSD) are vulnerable to a unique form of inbreeding depression. Diploids heterozygous at one or more CSD loci develop into females but diploids homozygous at all loci develop into diploid males, which are generally sterile or inviable. Species with multiple polymorphic CSD loci (ml‐CSD) may have lower rates of diploid male production than species with a single CSD locus (sl‐CSD), but it is not clear if polymorphism is consistently maintained at all loci. Here, we assess the rate of diploid male production in a population of Cotesia rubecula, a two‐locus CSD parasitoid wasp species, approximately 20 years after the population was introduced for biological control. We show that diploid male production dropped from 8–13% in 2005 and 2006 to 3–4% by 2015. We also show from experimental crosses that the population maintained polymorphism at both CSD loci in 2015. We use theory and simulations to show that balancing selection on all CSD alleles promotes polymorphism at several loci in ml‐CSD populations. Our study supports the hypothesis that ml‐CSD populations have lower diploid male production and are more likely to persist than comparable sl‐CSD populations.  相似文献   

5.
How polymorphisms are maintained within populations over long periods of time remains debated, because genetic drift and various forms of selection are expected to reduce variation. Here, we study the genetic architecture and maintenance of phenotypic morphs that confer crypsis in Timema cristinae stick insects, combining phenotypic information and genotyping‐by‐sequencing data from 1,360 samples across 21 populations. We find two highly divergent chromosomal variants that span megabases of sequence and are associated with colour polymorphism. We show that these variants exhibit strongly reduced effective recombination, are geographically widespread and probably diverged millions of generations ago. We detect heterokaryotype excess and signs of balancing selection acting on these variants through the species’ history. A third chromosomal variant in the same genomic region likely evolved more recently from one of the two colour variants and is associated with dorsal pattern polymorphism. Our results suggest that large‐scale genetic variation associated with crypsis has been maintained for long periods of time by potentially complex processes of balancing selection.  相似文献   

6.
Genes of the major histocompatibility complex (MHC) are highly polymorphic in most terrestrial mammal populations so far studied. Exceptions to this are typically populations that lack genome-wide diversity. Here I show that two populations of the southern elephant seal (Mirounga leonina) have low DNA restriction fragment length polymorphism at MHC loci when compared with terrestrial mammals. Limited studies on MHC polymorphism in two cetacean species suggest this is a feature of marine mammal populations in general. MHC polymorphism is thought to be maintained by balancing selection, and several types of disease-based and reproductive-based mechanisms have been proposed. For the three marine mammal species examined, the low MHC polymorphism cannot be explained by low genome-wide diversity, or by any reproductive-based selection pressure. It can, however, be explained by diminished exposure to pathogenic selection pressure compared with terrestrial mammals. Reduced exposure to pathogens would also mean that marine mammal populations may be susceptible to occasional pathogen-induced mass mortalities.  相似文献   

7.
Theory indicates that numbers of mating types should tend towards infinity or remain at two. The social amoeba, Dictyostelium discoideum, however, has three mating types. It is therefore a mystery how this species has broken the threshold of two mating types, but has not increased towards a much higher number. Frequency‐dependent selection on rare types in combination with isogamy, a form of reproduction involving gametes similar in size, could explain the evolution of multiple mating types in this system. Other factors, such as drift, may be preventing the evolution of more than three. We first looked for evidence of isogamy by measuring gamete size associated with each type. We found no evidence of size dissimilarities between gametes. We then looked for evidence of balancing selection, by examining mating type distributions in natural populations and comparing genetic differentiation at the mating type locus to that at more neutral loci. We found that mating type frequency varied among the three populations we examined, with only one of the three showing an even sex ratio, which does not support balancing selection. However, we found more population structure at neutral loci than the mating type locus, suggesting that the three mating types are indeed maintained at intermediate frequencies by balancing selection. Overall, the data are consistent with balancing selection acting on D. discoideum mating types, but with a sufficiently weak rare sex advantage to allow for drift, a potential explanation for why these amoebae have only three mating types.  相似文献   

8.
Throughout this century genetic polymorphisms for color have been widely used as a research tool to allow insights into key evolutionary processes. Although color variants can often be diverse within populations, frequencies of different morphs may be similar across populations, either as a result of balancing selection or gene flow. Under these circumstances selection can be extremely difficult to demonstrate. Here we test for balancing selection on the naturally occurring color forms of the Hawaiian happy-face spider, Theridion grallator with two approaches. First, allozyme loci are used to generate a null model against which to test selection. Frequencies of alleles involved in the color polymorphism of T. grallator are used to generate another estimate for comparison. The results suggest that statistically similar frequencies of color morphs among populations of T. grallator may be maintained by some form of balancing selection. Second, we make use of an unusual event in which the normally stable frequencies of unpatterned and patterned morphs within a population were found to have shifted toward an excess of unpatterned morphs. We scored offspring of all fertilized, unpatterned (bottom-recessive) females found during this period of skewed morph frequencies and also in a year when morph frequencies were normal to deduce paternal color phenotypes. Mating was found to be random in the normal year, but in the perturbed year females had mated with rare (patterned) males twice as frequently as expected on the basis of the frequency of this morph type in the population. Both of these results are consistent with selection operating on the color polymorphism, and we speculate that apostatic selection, perhaps mediated by bird predators, may provide the mechanism.  相似文献   

9.
Huang SW  Yu HT 《Genetica》2003,119(2):201-218
Major histocompatibility complex (MHC) genes are the most polymorphic loci known for vertebrates. Here we employed five microsatellite loci closely linked to the MHC region in an attempt to study the amount of genetic variation in 19 populations of the southeast Asian house mouse (Mus musculus castaneus) in Taiwan. The overall polymorphism at the five loci was high (He = 0.713), and the level of polymorphism varied from locus to locus. Furthermore, in order to investigate if selection is operating on MHC genes in natural mouse populations, we compared the extent and pattern of genetic variation for the MHC-linked microsatellite loci (the MHC loci) with those for the microsatellite loci located outside the MHC region (the non-MHC loci). The number of alleles and the logarithm of variance in repeat number were significantly higher for the MHC loci than for the non-MHC loci, presumably reflecting linkage to a locus under balancing selection. Although three statistical tests used do not provide support for selection, their lack of support may be due to low statistical power of the tests, to weakness of selection, or to a profound effect of genetic drift reducing the signature of balancing selection. Our results also suggested that the populations in the central and the southwestern regions of Taiwan might be one part of a metapopulation structure.  相似文献   

10.
Signatures of balancing selection are often found when investigating the extremely polymorphic regions of major histocompatibility complex (MHC) genes, and it is generally accepted that selective forces maintain this polymorphism. However, the exact nature of the selection is controversial. Theoretical studies have mainly focused on overdominance and/or frequency dependent selection while laboratory studies have emphasised the role of mate choice. Empirical field data, on the other hand, have been relatively scarce. Previously we have found that geographic structure in MHC class II genes of the Great Snipe (Gallinago media) is too pronounced to be explained by neutral forces alone. Here we test the hypothesis that sexual selection on MHC alleles may be influencing this geographic structure between mountain and lowland populations. We found evidence of balancing selection acting on MHC genes in the form of a higher rate of amino-acid changing substitutions compared to silent substitutions in the peptide binding regions. Not only natural selection but also sexual selection may influence MHC polymorphism in this bird because certain MHC alleles have been found to be associated with higher male mating success. Contrary to predictions from negative frequency dependent selection, males carrying locally rare alleles did not have a mating advantage. Instead, the mating success of alleles in a mountain population was positively correlated to their relative frequency in the mountains compared to the lowlands, implying that locally adapted MHC alleles may also be favoured by sexual selection.  相似文献   

11.
Alternative reproductive tactics (ARTs) are examples of individual heterogeneity in which males adopt one of typically two alternative strategies to mate with females: males are either large, armed fighters or small, benign sneakers. ART expression is often conditionally determined, and variation in the expression of conditional ARTs due to genetic and/or environmental influences can greatly affect population composition and trajectory. For example, ecological feedback mechanisms resulting from strong density‐dependent competition over food have been suggested to explain the observation that the harvesting of scramblers (= sneakers) in closed populations of the bulb mite Rhizoglyphus robini did not result in an increase (expected from quantitative genetics theory) but decrease in fighter expression. Here, we exposed closed bulb mite populations to selective fighter or scrambler harvesting for 5–6 generations under abundant food (to halt ecological feedbacks through density‐dependence) to confirm predictions from quantitative genetics theory. However, we found no evolutionary shift in ART expression; rather, we observed an overcompensatory ecological response, whereby the number of fighters increased when we harvested them. Treatment effects on scrambler numbers could not be tested as there were too few in the experimental populations. Further experiments revealed that starved fighters preferentially killed immature males and immature fighters; possibly to reduce male‐male competition as e.g. immature fighters have not yet developed their lethal weaponry. If this is so, then harvesting adult fighters reduced the killing pressure on immature males in our experiment, which resulted in an overcompensatory number of immature fighters that matured as adults. Our results highlight the complexity of how individual heterogeneity in ARTs affects the ecological and evolutionary processes that determine population fluctuations.  相似文献   

12.
Genetic variation is critical for adaptive evolution. Despite its importance, there is still limited evidence in support of some prominent theoretical models explaining the maintenance of genetic polymorphism within populations. We examined 84 populations of Xiphophorus variatus, a livebearing fish with a genetic polymorphism associated with physiological performance, to test: (1) whether niche differentiation explains broad‐scale maintenance of polymorphism, (2) whether polymorphism is maintained among populations by local adaptation and migration, or (3) whether heterogeneity in explicit environmental variables could be linked to levels of polymorphism within populations. We found no evidence of climatic niche differentiation that could generate or maintain broad geographic variation in polymorphism. Subsequently, hierarchical partitioning of genetic richness and partial mantel tests revealed that 76% of the observed genetic richness was partitioned within populations with no effect of geographic distance on polymorphism. These results strongly suggest a lack of migration‐selection balance in the maintenance of polymorphism, and model selection confirmed a significant relationship between environmental heterogeneity and genetic richness within populations. Few studies have demonstrated such effects at this scale, and additional studies in other taxa should examine the generality of gene‐by‐environment interactions across populations to better understand the dynamics and scale of balancing selection.  相似文献   

13.
The factors maintaining sex chromosome meiotic drive, or sex ratio (SR), in natural populations remain uncertain. Coevolution between segregation distortion and modifiers should produce transient SR distortion while selection can result in a stable polymorphism. We hypothesize that if SR is maintained by selection, then phylogenetically related populations should exhibit similar SR frequency and intensity. Furthermore, when drive is present, females should mate with multiple males more often both to insure fertility and to increase the probability of producing male progeny. In this paper we report on variation in SR frequency and multiple mating among seven populations and three species of stalk-eyed flies, genus Cyrtodiopsis, from southeast Asia. Using a phylogenetic hypothesis based on 1100 bp of mtDNA sequence we find that while sex chromosome meiotic drive is present in all populations of C. whitei and C. dalmanni, the frequency and intensity of drive only differs between populations or species with greater than 4.8% sequence divergence. The frequency of females mating with multiple males is higher in populations with SR. In addition, SR males mate less often, possibly to compensate for sperm depletion. Our results suggest that sex chromosome drive is maintained by balancing selection in populations of C. whitei and C. dalmanni. Nevertheless, coevolution between drive and suppressors deserves further study.  相似文献   

14.
Understanding the evolution and maintenance of within-sex reproductive morphs, or alternative reproductive phenotypes (ARPs), requires in depth understanding of the proximate mechanisms that determine ARP expression. Most species express ARPs in complex ecological environments, yet little is know about how different environmental variables collectively affect ARP expression. Here, I investigated the influence of maternal and developmental nutrition and sire phenotype on ARP expression in bulb mites (Rhizoglyphus robini), where males are either fighters, able to kill other mites, or benign scramblers. In a factorial experiment, females were raised on a rich or a poor diet, and after maturation they were paired to a fighter or a scrambler. Their offspring were put on the rich or poor diet. Females on the rich diet increased investment into eggs when mated to a fighter, but suffered reduced longevity. Females indirectly affected offspring ARP expression as larger eggs developed into larger final instars, which were more likely to develop into a fighter. Final instar size, which also strongly depended on offspring nutrition, was the main cue for morph development: a switch point, or size threshold, existed where development switched from one phenotype to the other. Sire phenotype affected offspring phenotype, but only if offspring were on the poor diet, indicating a gene by environment interaction. Overall, the results revealed that complex environmental effects can underlie ARP expression, with differential maternal investment potentially amplifying genetic effects on offspring morphology. These effects can therefore play an important role in understanding how selection affects ARP expression and, like quantitative genetics models for continuous traits, should be incorporated into models of threshold traits.  相似文献   

15.
The coding regions of many of the major histocompatibility complex (MHC) (human leukocyte antigen [HLA] in humans) molecules are believed to be subject to balancing selection. But it is less certain whether the regulatory regions of such coding sequences are also subject to the same type of selection. Here, we studied the polymorphism of the regulatory regions of the HLA-DPA1 and HLA-DPB1 genes among ethnic minorities in southwestern China. Phylogenetic analysis revealed two deep clades >10 million years old. There is almost complete linkage disequilibrium between the regulatory and coding regions of HLA-DPA1, which hints at coadaptive balancing selection on the entire region. Thus, the molecular mechanism of balancing selection in MHC may involve expression modulation in addition to coding-region polymorphisms. Although the frequency of clade II is >30% in some ethnic minorities, it decreases to <5% among southern Han Chinese and vanishes among Europeans. As suspected, some ancient balanced polymorphisms, lost in major populations, still exist in isolated ethnicities. These isolated populations may thus contribute disproportionately to the total diversity of modern humans.  相似文献   

16.
Summary The interrelation of genic polymorphism at the Malate dehydrogenase (Mdh)-locus and chromosomal polymorphism for superimposed gene arrangements was studied in 5 experimental populations of Drosophila subobscura. It could be shown that chromosomal polymorphism is maintained by balancing selection in favour of the heterozygotes. In contrast, selection at the Mdh-locus itself seems to be of minor importance. The changes of frequency observed for the Mdh-alleles are most probably due to hitch-hiking on the gene blocks enclosed by the chromosomal structures or to selection for tightly linked genes rather than to fitness differences between Mdh-genotypes. The results may be considered as a model for the situation found in natural populations of D. subobscura.  相似文献   

17.
Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a postbottlenecked population is challenging due to the potentially overriding effects of drift. Toll‐like receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing selection. We previously characterized variation at TLR loci in the Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a historical bottleneck. Five of seven TLR loci were polymorphic, which is in sharp contrast to the low genomewide variation observed. However, standard population genetic statistical methods failed to detect a contemporary signature of selection at any TLR locus. We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating the population's demography in the software DIYABC. This showed that the posterior distributions of mutation rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations with an agent‐based model using typical values for the mutation rate, which indicated that weak balancing selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating TLR polymorphism in the prebottleneck populations, but was unable to discern any effects of balancing selection in the contemporary population. Our results show drift is the overriding evolutionary force that has shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR polymorphisms might be merely the ‘ghost of selection past’. Forecast models predict immunogenetic variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such ‘drift debt’ occurs when a gene pool has not yet reached its new equilibrium level of polymorphism, and this loss could be an important threat to many recently bottlenecked populations.  相似文献   

18.
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen‐mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high dn/ds ratio and the presence of trans‐species polymorphisms suggest that a strong long‐term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D‐loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000–30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.  相似文献   

19.
Abstract.— The sexual ornamentation used by male guppies to attract females comprises many components, each of which varies considerably among males. Although natural and sexual selection have been shown to contribute to divergence among populations in male sexual ornaments, the role of sexual selection in maintaining polymorphism within populations is less clear. We used both parametric quadratic regression and nonparametric projection pursuit regression techniques to reveal the major axes of non-linear sexual selection on male ornaments. We visualized the fitness surfaces defined by these axes using thin-plate splines to allow a direct comparison of the two methodologies. Identification of the major axes of selection and their visualization was critical in determining the form and strength of nonlinear selection. Both types of analysis revealed fitness surfaces comprising three peaks, suggesting that there is more than one way to make an attractive guppy. Disruptive selection may be an important process underlying the presence of multiple sexual ornaments and may contribute to the maintenance of the high levels of polymorphism in male sexual ornaments found in guppy populations.  相似文献   

20.
Chromosomal inversions often contribute to local adaptation across latitudinal clines, but the underlying selective mechanisms remain poorly understood. We and others have previously shown that a clinal inversion polymorphism in Drosophila melanogaster, In(3R)Payne, underpins body size clines along the North American and Australian east coasts. Here, we ask whether this polymorphism also contributes to clinal variation in other fitness‐related traits, namely survival traits (lifespan, survival upon starvation and survival upon cold shock). We generated homokaryon lines, either carrying the inverted or standard chromosomal arrangement, isolated from populations approximating the endpoints of the North American cline (Florida, Maine) and phenotyped the flies at two growth temperatures (18 °C, 25 °C). Across both temperatures, high‐latitude flies from Maine lived longer and were more stress resistant than low‐latitude flies from Florida, as previously observed. Interestingly, we find that this latitudinal pattern is partly explained by the clinal distribution of the In(3R)P polymorphism, which is at ~ 50% frequency in Florida but absent in Maine: inverted karyotypes tended to be shorter‐lived and less stress resistant than uninverted karyotypes. We also detected an interaction between karyotype and temperature on survival traits. As In(3R)P influences body size and multiple survival traits, it can be viewed as a ‘supergene’, a cluster of tightly linked loci affecting multiple complex phenotypes. We conjecture that the inversion cline is maintained by fitness trade‐offs and balancing selection across geography; elucidating the mechanisms whereby this inversion affects alternative, locally adapted phenotypes across the cline is an important task for future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号