共查询到20条相似文献,搜索用时 0 毫秒
1.
Specification of the anteroposterior (AP) axis in Drosophila oocytes requires proper organization of the microtubule and actin cytoskeleton. The establishment and regulation of cytoskeletal polarity remain poorly understood, however. Here, we show important roles for the tumor suppressor Lethal (2) giant larvae (Lgl) and atypical protein kinase C (aPKC) in regulating microtubule polarity and setting up the AP axis of the oocyte. Lgl in the germline cells regulates the localization of axis-specifying morphogens. aPKC phosphorylation of Lgl restricts Lgl activity to the oocyte posterior, thereby dividing the cortex into different domains along the AP axis. Active Lgl promotes the formation of actin-rich projections at the oocyte cortex and the posterior enrichment of the serine/threonine kinase Par-1, a key step for oocyte polarization. Our studies suggest that Lgl and its phosphorylation by aPKC may form a conserved regulatory circuitry in polarization of various cell types. 相似文献
2.
Dap160/intersectin binds and activates aPKC to regulate cell polarity and cell cycle progression 总被引:1,自引:0,他引:1
The atypical protein kinase C (aPKC) is required for cell polarization of many cell types, and is upregulated in several human tumors. Despite its importance in cell polarity and growth control, relatively little is known about how aPKC activity is regulated. Here, we use a biochemical approach to identify Dynamin-associated protein 160 (Dap160; related to mammalian intersectin) as an aPKC-interacting protein in Drosophila. We show that Dap160 directly interacts with aPKC, stimulates aPKC activity in vitro and colocalizes with aPKC at the apical cortex of embryonic neuroblasts. In dap160 mutants, aPKC is delocalized from the neuroblast apical cortex and has reduced activity, based on its inability to displace known target proteins from the basal cortex. Both dap160 and aPKC mutants have fewer proliferating neuroblasts and a prolonged neuroblast cell cycle. We conclude that Dap160 positively regulates aPKC activity and localization to promote neuroblast cell polarity and cell cycle progression. 相似文献
3.
Karen A. Newell-Litwa Mathilde Badoual Hannelore Asmussen Heather Patel Leanna Whitmore Alan Rick Horwitz 《The Journal of cell biology》2015,210(2):225-242
RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front–back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front–back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines. 相似文献
4.
Planar cell polarity (PCP) is a common feature of many vertebrate and invertebrate epithelia and is perpendicular to their apical/basal (A/B) polarity axis. While apical localization of PCP determinants such as Frizzled (Fz1) is critical for their function, the link between A/B polarity and PCP is poorly understood. Here, we describe a direct molecular link between A/B determinants and Fz1-mediated PCP establishment in the Drosophila eye. We demonstrate that dPatj binds the cytoplasmic tail of Fz1 and propose that it recruits aPKC, which in turn phosphorylates and inhibits Fz1. Accordingly, components of the aPKC complex and dPatj produce PCP defects in the eye. We also show that during PCP signaling, aPKC and dPatj are downregulated, while Bazooka is upregulated, suggesting an antagonistic effect of Bazooka on dPatj/aPKC. We propose a model whereby the dPatj/aPKC complex regulates PCP by inhibiting Fz1 in cells where it should not be active. 相似文献
5.
Yamanaka T Horikoshi Y Sugiyama Y Ishiyama C Suzuki A Hirose T Iwamatsu A Shinohara A Ohno S 《Current biology : CB》2003,13(9):734-743
BACKGROUND: Epithelial cells have apicobasal polarity and an asymmetric junctional complex that provides the bases for development and tissue maintenance. In both vertebrates and invertebrates, the evolutionarily conserved protein complex, PAR-6/aPKC/PAR-3, localizes to the subapical region and plays critical roles in the establishment of a junctional complex and cell polarity. In Drosophila, another set of proteins called tumor suppressors, such as Lgl, which localize separately to the basolateral membrane domain but genetically interact with the subapical proteins, also contribute to the establishment of cell polarity. However, how physically separated proteins interact remains to be clarified. RESULTS: We show that mammalian Lgl competes for PAR-3 in forming an independent complex with PAR-6/aPKC. During cell polarization, mLgl initially colocalizes with PAR-6/aPKC at the cell-cell contact region and is phosphorylated by aPKC, followed by segregation from apical PAR-6/aPKC to the basolateral membrane after cells are polarized. Overexpression studies establish that increased amounts of the mLgl/PAR-6/aPKC complex suppress the formation of epithelial junctions; this contrasts with the previous observation that the complex containing PAR-3 promotes it. CONCLUSIONS: These results indicate that PAR-6/aPKC selectively interacts with either mLgl or PAR-3 under the control of aPKC activity to regulate epithelial cell polarity. 相似文献
6.
CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex 总被引:1,自引:0,他引:1 下载免费PDF全文
Mimori-Kiyosue Y Grigoriev I Lansbergen G Sasaki H Matsui C Severin F Galjart N Grosveld F Vorobjev I Tsukita S Akhmanova A 《The Journal of cell biology》2005,168(1):141-153
CLIP-associating protein (CLASP) 1 and CLASP2 are mammalian microtubule (MT) plus-end binding proteins, which associate with CLIP-170 and CLIP-115. Using RNA interference in HeLa cells, we show that the two CLASPs play redundant roles in regulating the density, length distribution and stability of interphase MTs. In HeLa cells, both CLASPs concentrate on the distal MT ends in a narrow region at the cell margin. CLASPs stabilize MTs by promoting pauses and restricting MT growth and shortening episodes to this peripheral cell region. We demonstrate that the middle part of CLASPs binds directly to EB1 and to MTs. Furthermore, we show that the association of CLASP2 with the cell cortex is MT independent and relies on its COOH-terminal domain. Both EB1- and cortex-binding domains of CLASP are required to promote MT stability. We propose that CLASPs can mediate interactions between MT plus ends and the cell cortex and act as local rescue factors, possibly through forming a complex with EB1 at MT tips. 相似文献
7.
The evolutionary conserved PAR proteins control polarization and asymmetric division in many organisms. Recent work in Caenorhabditis elegans demonstrated that nos-3 and fbf-1/2 can suppress par-2(it5ts) lethality, suggesting that they participate in cell polarity by regulating the function of the anterior PAR-3/PAR-6/PKC-3 proteins. In Drosophila embryos, Nanos and Pumilio are homologous to NOS-3 and FBF-1/2 respectively and control cell polarity by forming a complex with the tumor suppressor Brat to inhibit Hunchback mRNA translation. In this study, we investigated the possibility that Brat could control cell polarity and asymmetric cell division in C. elegans. We found that disrupting four of the five C. elegans Brat homologs (Cebrats) individually results in suppression of par-2(it5ts) lethality, indicating that these genes are involved in embryonic polarity. Two of the Cebrats, ncl-1 and nhl-2, partially restore the localization of PAR proteins at the cortex. While mutations in the four Cebrat genes do not severely impair polarity, they display polarity-associated defects. Surprisingly, these defects are absent from nos-3 mutants. Similarly, while nos-3 controls PAR-6 protein levels, this is not the case for any of the Cebrats. Our results, together with results from Drosophila, indicate that Brat family members function in generating cellular asymmetries and suggest that, in contrast to Drosophila embryos, the C. elegans homologs of Brat and Nanos could participate in embryonic polarity via distinct mechanisms. 相似文献
8.
Asymmetric cell division is a mechanism for generating cell diversity as well as maintaining stem cell homeostasis in both Drosophila and mammals. In Drosophila, larval neuroblasts are stem cell-like progenitors that divide asymmetrically to generate neurons of the adult brain. Mitotic neuroblasts localize atypical protein kinase C (aPKC) to their apical cortex. Cortical aPKC excludes cortical localization of Miranda and its cargo proteins Prospero and Brain tumor, resulting in their partitioning into the differentiating, smaller ganglion mother cell (GMC) where they are required for neuronal differentiation. In addition to aPKC, the kinases Aurora-A and Polo also regulate neuroblast self-renewal, but the phosphatases involved in neuroblast self-renewal have not been identified. Here we report that aPKC is in a protein complex in vivo with Twins, a Drosophila B-type protein phosphatase 2A (PP2A) subunit, and that Twins and the catalytic subunit of PP2A, called Microtubule star (Mts), are detected in larval neuroblasts. Both Twins and Mts are required to exclude aPKC from the basal neuroblast cortex: twins mutant brains, twins mutant single neuroblast mutant clones, or mts dominant negative single neuroblast clones all show ectopic basal cortical localization of aPKC. Consistent with ectopic basal aPKC is the appearance of supernumerary neuroblasts in twins mutant brains or twins mutant clones. We conclude that Twins/PP2A is required to maintain aPKC at the apical cortex of mitotic neuroblasts, keeping it out of the differentiating GMC, and thereby maintaining neuroblast homeostasis. 相似文献
9.
Neph-Nephrin proteins bind the Par3-Par6-atypical protein kinase C (aPKC) complex to regulate podocyte cell polarity 总被引:3,自引:0,他引:3
Hartleben B Schweizer H Lübben P Bartram MP Möller CC Herr R Wei C Neumann-Haefelin E Schermer B Zentgraf H Kerjaschki D Reiser J Walz G Benzing T Huber TB 《The Journal of biological chemistry》2008,283(34):23033-23038
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their foot processes and the interposed slit diaphragm. So far, very little is known about the guidance cues and polarity signals required to regulate proper development and maintenance of the glomerular filtration barrier. We now identify Par3, Par6, and atypical protein kinase C (aPKC) polarity proteins as novel Neph1-Nephrin-associated proteins. The interaction was mediated through the PDZ domain of Par3 and conserved carboxyl terminal residues in Neph1 and Nephrin. Par3, Par6, and aPKC localized to the slit diaphragm as shown in immunofluorescence and immunoelectron microscopy. Consistent with a critical role for aPKC activity in podocytes, inhibition of glomerular aPKC activity with a pseudosubstrate inhibitor resulted in a loss of regular podocyte foot process architecture. These data provide an important link between cell recognition mediated through the Neph1-Nephrin complex and Par-dependent polarity signaling and suggest that this molecular interaction is essential for establishing the three-dimensional architecture of podocytes at the kidney filtration barrier. 相似文献
10.
Tissue morphogenesis requires assembling and disassembling individual cell-cell contacts without losing epithelial integrity. This requires dynamic control of adherens junction (AJ) positioning around the apical domain, but the mechanisms involved are unclear. We show that atypical Protein Kinase C (aPKC) is required for symmetric AJ positioning during Drosophila embryogenesis. aPKC is dispensable for initial apical AJ recruitment, but without aPKC, AJs form atypical planar-polarized puncta at gastrulation. Preceding this, microtubules fail to dissociate from centrosomes, and at gastrulation abnormally persistent centrosomal microtubule asters cluster AJs into the puncta. Dynein enrichment at the puncta suggests it may draw AJs and microtubules together and microtubule disruption disperses the puncta. Through cytoskeletal disruption in wild-type embryos, we find a balance of microtubule and actin interactions controls AJ symmetry versus planar polarity during normal gastrulation. aPKC apparently regulates this balance. Without aPKC, abnormally strong microtubule interactions break AJ symmetry and epithelial structure is lost. 相似文献
11.
Kohjima M Noda Y Takeya R Saito N Takeuchi K Sumimoto H 《Biochemical and biophysical research communications》2002,299(4):641-646
The cell polarity protein PAR3, conserved from the nematode to the vertebrate, forms a complex with PAR6 and atypical protein kinase C (aPKC), and the protein complex occurs at the tight junctions in mammalian epithelial cells. Here we have cloned human cDNA for a novel PAR3 homologue, designated PAR3beta, whose messages are present in a variety of tissues and most abundantly expressed in the adult and fetal kidneys. The encoded protein of 1,205 amino acids contains a region homologous to the aPKC-binding domain of PAR3alpha, another human homologue previously identified, and three PDZ domains; the first PDZ domain of PAR3alpha is considered to interact with PAR6. Unexpectedly, in contrast to other PAR3s found in various species, PAR3beta is incapable of binding to any isotypes of PAR6 or aPKC. Nevertheless PAR3beta, expressed intrinsically or extrinsically, localizes to the tight junctions, indicating that the localization does not require the ternary complex formation. 相似文献
12.
Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia 总被引:1,自引:0,他引:1 下载免费PDF全文
Cell polarity is essential for generating cell diversity and for the proper function of most differentiated cell types. In many organisms, cell polarity is regulated by the atypical protein kinase C (aPKC), Bazooka (Baz/Par3), and Par6 proteins. Here, we show that Drosophila aPKC zygotic null mutants survive to mid-larval stages, where they exhibit defects in neuroblast and epithelial cell polarity. Mutant neuroblasts lack apical localization of Par6 and Lgl, and fail to exclude Miranda from the apical cortex; yet, they show normal apical crescents of Baz/Par3, Pins, Inscuteable, and Discs large and normal spindle orientation. Mutant imaginal disc epithelia have defects in apical/basal cell polarity and tissue morphology. In addition, we show that aPKC mutants show reduced cell proliferation in both neuroblasts and epithelia, the opposite of the lethal giant larvae (lgl) tumor suppressor phenotype, and that reduced aPKC levels strongly suppress most lgl cell polarity and overproliferation phenotypes. 相似文献
13.
Clémence L. Gamblin émilie J.-L. Hardy Fran?ois J.-M. Chartier Nicolas Bisson Patrick Laprise 《The Journal of cell biology》2014,204(4):487-495
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells. 相似文献
14.
Chalmers AD Pambos M Mason J Lang S Wylie C Papalopulu N 《Development (Cambridge, England)》2005,132(5):977-986
In early vertebrate development, apicobasally polarised blastomeres divide to produce inner non-polarised cells and outer polarised cells that follow different fates. How the polarity of these early blastomeres is established is not known. We have examined the role of Crumbs3, Lgl2 and the apical aPKC in the polarisation of frog blastomeres. Lgl2 localises to the basolateral membrane of blastomeres, while Crumbs3 localises to the apical and basolateral membranes. Overexpression aPKC and Crumbs3 expands the apical domain at the expense of the basolateral and repositions tight junctions in the new apical-basolateral interface. Loss of aPKC function causes loss of apical markers and redirects basolateral markers ectopically to the apical membrane. Cell polarity and tight junctions, but not cell adhesion, are lost and outer polarised cells become inner-like apolar cells. Overexpression of Xenopus Lgl2 phenocopies the aPKC knockout, suggesting that Lgl2 and aPKC act antagonistically. This was confirmed by showing that aPKC and Lgl2 can inhibit the localisation of each other and that Lgl2 rescues the apicalisation caused by aPKC. We conclude that an instrumental antagonistic interaction between aPKC and Lgl2 defines apicobasal polarity in early vertebrate development. 相似文献
15.
Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2 总被引:1,自引:0,他引:1
Gao B Song H Bishop K Elliot G Garrett L English MA Andre P Robinson J Sood R Minami Y Economides AN Yang Y 《Developmental cell》2011,20(2):163-176
It is fundamentally important that signaling gradients provide positional information to govern morphogenesis of multicellular organisms. Morphogen gradients can generate different cell types in specific spatial order at distinct threshold concentrations. However, it is largely unknown whether and how signaling gradients also control cell polarities by acting as global cues. Here, we show that Wnt signaling gradient provides directional information to a field of cells. Vangl2, a core component in planar cell polarity, forms Wnt-induced receptor complex with Ror2 to sense Wnt dosages. Wnts dose-dependently induce Vangl2 phosphorylation of serine/threonine residues and Vangl2 activities depend on its levels of phosphorylation. In the limb bud, Wnt5a signaling gradient controls limb elongation by establishing PCP in chondrocytes along the proximal-distal axis through regulating Vangl2 phosphorylation. Our studies have provided new insight to Robinow syndrome, Brachydactyly Type B1, and spinal bifida which are caused by mutations in human ROR2, WNT5A, or VANGL. 相似文献
16.
Michael R. Dohn Nathan A. Mundell Leah M. Sawyer Julie A. Dunlap Jason R. Jessen 《Developmental biology》2013
Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin–fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements. 相似文献
17.
Phosphatase and tensin homolog (Pten) phosphatase opposes intracellular phosphoinositide 3-kinase (PI3K)/Akt signaling and is a potent tumor suppressor, while Golgi beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is positively associated with cancer progression and metastasis. beta1,6GlcNAc-branched N-glycans on receptor glycoproteins promote their surface residency and sensitizes cells to growth factor signaling. Here we demonstrate that the Pten heterozygosity in mouse embryonic fibroblasts enhances cell adhesion-dependent PI3K/Akt signaling, cell spreading, and proliferation, while Pten/Mgat5 double mutant cells are normalized. However, planar asymmetry typical of fibroblasts and invasive carcinomas is not fully rescued, suggesting that Mgat5 and Pten function together to regulate the membrane dynamics of PI3K/Akt signaling typical of motile cells. Pten heterozygosity was associated with increased surface beta1,6GlcNAc-branched N-glycans, suggesting positive feedback from PI3K signaling to N-glycan branching. In vivo, Mgat5(-/-) Pten(+/-) and Mgat5(+/-)Pten(+/-)mutant mice showed a small but significant increase in longevity compared with Pten(+/-) mice. Taken together, our results reveal that Mgat5 and Pten interact in an opposing manner to regulate cellular sensitivities to extracelluar growth cues. 相似文献
18.
Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling 总被引:10,自引:0,他引:10
Myosin-1c (also known as myosin-Ibeta) has been proposed to mediate the slow component of adaptation by hair cells, the sensory cells of the inner ear. To test this hypothesis, we mutated tyrosine-61 of myosin-1c to glycine, conferring susceptibility to inhibition by N(6)-modified ADP analogs. We expressed the mutant myosin-1c in utricular hair cells of transgenic mice, delivered an ADP analog through a whole-cell recording pipette, and found that the analog rapidly blocked adaptation to positive and negative deflections in transgenic cells but not in wild-type cells. The speed and specificity of inhibition suggests that myosin-1c participates in adaptation in hair cells. 相似文献
19.
A key feature of early vertebrate development is the formation of superficial, epithelial cells that overlie non-epithelial deep cells. In Xenopus, deep and superficial cells show a range of differences, including a different competence for primary neurogenesis. We show that the two cell populations are generated during the blastula stages by perpendicularly oriented divisions. These take place during several cell divisions, in a variable pattern, but at a percentage that varies little between embryos and from one division to the next. The orientation of division correlates with cell shape suggesting that simple geometric rules may control the orientation of division in this system. We show that dividing cells are molecularly polarised such that aPKC is localised to the external, apical, membrane. Membrane localised aPKC can be seen as early as the one-cell stage and during the blastula divisions, it is preferentially inherited by superficial cells. Finally, we show that when 64-cell stage isolated blastomeres divide perpendicularly and the daughters are cultured separately, only the progeny of the cells that inherit the apical membrane turn on the bHLH gene, ESR6e. We conclude that oriented cell divisions generate the superficial and deep cells and establish cell fate diversity between them. 相似文献
20.
Epithelial cells comprise the foundation for the majority of organs in the mammalian body, and are the source of approximately 90% of all human cancers. Characteristically, epithelial cells form intercellular adhesions, exhibit apical/basal polarity, and orient their mitotic spindles in the plane of the epithelial sheet. Defects in these attributes result in the tissue disorganization associated with cancer. Epithelia undergo self-renewal from stem cells, which might in some cases be the cell of origin for cancers. The PAR polarity proteins are master regulators of epithelial organization, and are closely linked to signaling pathways such as Hippo, which orchestrate proliferation and apoptosis to control organ size. 3D ex vivo culture systems can now faithfully recapitulate epithelial organ morphogenesis, providing a powerful approach to study both normal development and the initiating events in carcinogenesis. 相似文献