首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The fractional absorption of photosynthetically active radiation (fPAR) is frequently a key variable in models describing terrestrial ecosystem–atmosphere interactions, carbon uptake, growth and biogeochemistry. We present a novel approach to the estimation of the fraction of incident photosynthetically active radiation absorbed by the photosynthetic components of a plant canopy (fChl). The method uses micrometeorological measurements of CO2 flux and incident radiation to estimate light response parameters from which canopy structure is deduced. Data from two Ameriflux sites in Oklahoma, a tallgrass prairie site and a wheat site, are used to derive 7‐day moving average estimates of fChl during three years (1997–1999). The inverse estimates are compared to long‐term field measurements of PAR absorption. Good correlations are obtained when the field‐measured fPAR is scaled by an estimate of the green fraction of total leaf area, although the inverse technique tends to be lower in value than the field measurements. The inverse estimates of fChl using CO2 flux measurements are different from measurements of fPAR that might be made by other, more direct, techniques. However, because the inverse estimates are based on observed canopy CO2 uptake, they might be considered more biologically relevant than direct measurements that are affected by non‐physiologically active components of the canopy. With the increasing number of eddy covariance sites around the world the technique provides the opportunity to examine seasonal and inter‐annual variation in canopy structure and light harvesting capacity at individual sites. Furthermore, the inverse fChl provide a new source of data for development and testing of fPAR retrieval using remote sensing. New remote sensing algorithms, or adjustments to existing algorithms, might thus become better conditioned to ‘biologically significant’ light absorption than currently possible.  相似文献   

2.
Terrestrial green plants absorb photosynthetically active radiation (PAR; 400–700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.  相似文献   

3.
The spectral composition of photosynthetically active radiation (PAR) during clear and overcast days was studied above the canopy (U) and at two layers of a dense Norway spruce stand [Picea abies (L.) Karst.] characterized with an average LAI = 7.3 ± 0.8 (middle layer: M) and 12.3 ± 0.7 (lower layer: L). Whereas the spectral composition of PAR incoming on the canopy surface during cloudy days (characterized by diffuse index DI > 0.7) was almost independent of the solar elevation angle, the proportion of the blue-green spectral region of PAR was significantly reduced at low elevation angles during days with prevailing direct radiation (DI < 0.3). The PAR spectrum at both M and L levels was only slightly enriched in the green spectral region (more pronounced for DI < 0.3). The penetration of diffuse radiation into the canopy resulted in a slight (approx. 5%) reduction of the blue region proportion that remained stable during the day. On the contrary, under clear sky conditions the penetration of blue and red radiation was dependent on the solar elevation in an opposite manner in comparison with the spectral composition of PAR incident on canopy, giving almost twofold proportion of the blue part of the spectrum at a low elevation angle at M layer. We suggest that the blue enhancement of the spectrum within the Norway spruce canopy during clear days is due to a specific spatial arrangement of the assimilatory apparatus of a coniferous stand. Further, the possible consequences of the observed dynamics of the PAR spectrum inside the canopy during clear days on the efficiency of PAR absorption of the needles located within the canopy are discussed.  相似文献   

4.
Solar ultraviolet-B (UV-B) radiation penetrates plant canopies to a different degree than photosynthetically active radiation (PAR) because UV-B is diffused to a greater degree by the atmosphere. We measured both global (total) and diffuse solar radiation in canopy gaps of a semideciduous tropical forest in Panama. Measurements were simultaneously made in the UV-B and PAR wavebands. Compared to unobstructed measurements taken outside the forest, the sunlit portions of gaps were depleted in the proportion of UV-B relative to PAR, especially at midday. Shaded areas, in contrast, were always richer in UV-B relative to PAR, but the magnitude of the change varied greatly. Presumably this variation was due to the differences in the directional nature of diffuse solar UV-B radiation as compared to diffuse PAR. Measurements in the gaps showed substantial reductions in the proportion of radiation in the diffuse components of both the UV-B and PAR wavebands. However, because of the greater proportion of UV-B which is diffuse, it tended to predominate in shaded areas. Similar patterns were seen in measurements taken at temperate latitudes. Response of shade- and gap-dwelling plants to these high UV-B:PAR ratios has received little attention.  相似文献   

5.
Effects of seston on ultraviolet attenuation in Lake Biwa   总被引:3,自引:0,他引:3  
We examined the attenuation of underwater ultraviolet (UV) radiation and photosynthetically available radiation (PAR) in Lake Biwa, Japan, at offshore and inshore sites and under contrasting stratification and mixing regimes. There were large spatial differences in the water column transparency to both wavebands, despite little change in concentrations of dissolved organic carbon (DOC). The 1% of surface irradiance depth varied from 0.3 to 2.7 m at 305 nm, from 0.8 to 6.3 m at 380 nm, and from 2.3 to 12.8 m for PAR. Both PAR and UV transparency declined abruptly in the South Basin of the lake when a typhoon caused the resuspension of sediments. The water column ratio of UV to PAR increased by 30% at all stations over the course of a 3-week sampling period associated with the general increase in phytoplankton concentrations. At several sites, the diffuse attenuation coefficient for UV radiation deviated substantially from that predicted from UV-DOC models. A significantly positive linear relationship was found between UV attenuation (K d determined with a profiling UV radiometer) and the beam attenuation coefficient at 660 nm as measured by transmissometer. These results indicate that scattering and absorption by particulate matter can reduce UV transparency to below that inferred from DOC concentrations, and that current UV-exposure models should be modified to incorporate this effect. Received: March 21, 2001 / Accepted: August 17, 2001  相似文献   

6.
BACKGROUND AND AIMS: Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. METHODS: Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. KEY RESULTS: Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. CONCLUSIONS: The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.  相似文献   

7.
Riparian planting is often recommended for stream restoration, notably to mitigate solar heating of stream waters. However, plant leaves shade photosynthetically active radiation (PAR, 400–700 nm) more efficiently than the near-infrared (NIR, 700–3000 nm) wavelengths that comprise about half of incident solar radiation and so contribute equally to water heating. Total solar radiation (NIR + PAR) exposure at the reach scale is needed to avoid bias when predicting the thermal response of streams. In this article, we alert stream ecologists and riparian restorers to the water heating contribution of NIR and provide a means to account for both NIR and PAR in total solar radiation penetrating riparian canopies. We used spectral pyranometers to simultaneously measure total solar radiation and its NIR component under different tree canopies over a wide range of shade conditions as indexed by PAR exposure. Measurements were made during full overcast (diffuse lighting) conditions so as to ‘sample’ transmission of radiation through the complete canopy. The NIR proportion of sub-canopy solar radiation increased steadily with increasing shade and was appreciably greater under willow than pine canopies, while NZ native broadleaf rainforest had intermediate (rather variable) NIR content. Our trend lines for different tree canopies permit total sub-canopy solar radiation to be estimated from PAR exposure for unbiased modelling of stream thermal regimes.  相似文献   

8.
BACKGROUND AND AIMS: Photosynthetic radiation use efficiency (PhRUE) over the course of a day has been shown to be constant for leaves throughout a general canopy where nitrogen content (and thus photosynthetic properties) of leaves is distributed in relation to the light gradient. It has been suggested that this daily PhRUE can be calculated simply from the photosynthetic properties of a leaf at the top of the canopy and from the PAR incident on the canopy, which can be obtained from weather-station data. The objective of this study was to investigate whether this simple method allows estimation of PhRUE of different crops and with different daily incident PAR, and also during the growing season. METHODS: The PhRUE calculated with this simple method was compared with that calculated with a more detailed model, for different days in May, June and July in California, on almond (Prunus dulcis) and walnut (Juglans regia) trees. Daily net photosynthesis of 50 individual leaves was calculated as the daylight integral of the instantaneous photosynthesis. The latter was estimated for each leaf from its photosynthetic response to PAR and from the PAR incident on the leaf during the day. KEY RESULTS: Daily photosynthesis of individual leaves of both species was linearly related to the daily PAR incident on the leaves (which implies constant PhRUE throughout the canopy), but the slope (i.e. the PhRUE) differed between the species, over the growing season due to changes in photosynthetic properties of the leaves, and with differences in daily incident PAR. When PhRUE was estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident radiation above the canopy, obtained from weather-station data, the values were within 5 % of those calculated with the more detailed model, except in five out of 34 cases. CONCLUSIONS: The simple method of estimating PhRUE is valuable as it simplifies calculation of canopy photosynthesis to a multiplication between the PAR intercepted by the canopy, which can be obtained with remote sensing, and the PhRUE calculated from incident PAR, obtained from standard weather-station data, and from the photosynthetic properties of leaves at the top of the canopy. The latter properties are the sole crop parameters needed. While being simple, this method describes the differences in PhRUE related to crop, season, nutrient status and daily incident PAR.  相似文献   

9.
Mountain pastures dominated by the pasture grass Setaria sphacelata in the Andes of southern Ecuador are heavily infested by southern bracken (Pteridium arachnoideum), a major problem for pasture management. Field observations suggest that bracken might outcompete the grass due to its competitive strength with regard to the absorption of photosynthetically active radiation (PAR). To understand the PAR absorption potential of both species, the aims of the current paper are to (1) parameterize a radiation scheme of a two-big-leaf model by deriving structural (LAI, leaf angle parameter) and optical (leaf albedo, transmittance) plant traits for average individuals from field surveys, (2) to initialize the properly parameterized radiation scheme with realistic global irradiation conditions of the Rio San Francisco Valley in the Andes of southern Ecuador, and (3) to compare the PAR absorption capabilities of both species under typical local weather conditions. Field data show that bracken reveals a slightly higher average leaf area index (LAI) and more horizontally oriented leaves in comparison to Setaria. Spectrometer measurements reveal that bracken and Setaria are characterized by a similar average leaf absorptance. Simulations with the average diurnal course of incoming solar radiation (1998–2005) and the mean leaf–sun geometry reveal that PAR absorption is fairly equal for both species. However, the comparison of typical clear and overcast days show that two parameters, (1) the relation of incoming diffuse and direct irradiance, and (2) the leaf–sun geometry play a major role for PAR absorption in the two-big-leaf approach: Under cloudy sky conditions (mainly diffuse irradiance), PAR absorption is slightly higher for Setaria while under clear sky conditions (mainly direct irradiance), the average bracken individual is characterized by a higher PAR absorption potential. (∼74 MJ m−2 year−1). The latter situation which occurs if the maximum daily irradiance exceeds 615 W m−2 is mainly due to the nearly orthogonal incidence of the direct solar beam onto the horizontally oriented frond area which implies a high amount of direct PAR absorption during the noon maximum of direct irradiance. Such situations of solar irradiance favoring a higher PAR absorptance of bracken occur in ∼36% of the observation period (1998–2005). By considering the annual course of PAR irradiance in the San Francisco Valley, the clear advantage of bracken on clear days (36% of all days) is completely compensated by the slight but more frequent advantage of Setaria under overcast conditions (64% of all days). This means that neither bracken nor Setaria show a distinct advantage in PAR absorption capability under the current climatic conditions of the study area.  相似文献   

10.
Although satellite-borne sensors are now available to estimate cloud cover and incoming short-wave radiation across the Earth’s surface, the study of climatic variation and its impact on terrestrial and marine ecosystems involves historical analyses of data from networks of weather stations that only record extremes in temperatures and precipitation on a daily basis. Similarly, when projections are made with global atmospheric circulation models, the spatial resolution of predicted radiation is too coarse to incorporate the effects of heterogeneous topography. In this paper, we review the development and set forth a set of general equations that allow both diffuse and direct solar radiation to be estimated for each month on the basis of mean daily maximum and minimum temperatures, latitude, elevation, slope, and aspect. Adjustments for differences in slope, aspect, and elevation are made by varying the fraction of diffuse and direct solar beam radiation. To test the equations on various slopes and under different climatic conditions, we drew on high-quality radiation data recorded at a number of sites on three continents. On horizontal surfaces the set of equations predicted both direct and diffuse components of solar radiation within 1%–7% of recorded values. On slopes, estimates of monthly mean solar radiation were with 13% of observed values with a mean error of less than 2 MJ m–2day–1 over any given month. Received: 22 October 1999 / Revised: 14 May 2000 / Accepted: 5 June 2000  相似文献   

11.
T. OLESEN 《Austral ecology》1992,17(4):451-461
Abstract The photosynthetically active radiation (PAR) incident on a horizontal surface at an open mountain site is positively correlated with solar altitude for sunny, blue sky conditions. The proportion of red light in PAR decreases with increasing solar altitude, while that of blue increases. These results are consistent with the wavelength dependency of Rayleigh and Mie scattering. The ratio of near infrared radiation to PAR decreases with increasing solar altitude towards solar noon and with decreasing solar altitude towards sunset. Thus surface reflection seems to be an important part of the light climate. The relative transmission of daylight through a forest canopy to a horizontal surface is not correlated with solar altitude for sunny, blue sky conditions at a mountain site. The amount of diffuse daylight is negatively correlated with per cent canopy interception, and the amount of direct sunlight is negatively correlated with per cent solar track interception. Daylength is negatively correlated with both canopy and solar track interceptions. The proportion of red light in PAR increases with increasing solar altitude, while that of blue decreases. These results are opposite those for the open site and are due to the spatial patterns of canopy obstruction of the sky vault, and of the spectral quality of daylight across the sky. The ratio of near infrared radiation to PAR in shadelight increases with increasing canopy interception due to the selective scattering properties of the canopy. The ratio for shadelight is positively correlated with the ratio for sunflecks.  相似文献   

12.
Three models for estimating clear-day solar radiation were compared to one another and to values of solar radiation measured at Ft Collins, Colo. The models of Campbell (1977), Gates (1962) and McCullough and Porter (1971) all correlate closely with measurements of clear-day solar radiation. The Campbell and the Gates models require less technical expertise and less expensive computations to produce estimates of the direct component of solar radiation. All of the models appear to require calibration in order to correct estimates of the input variables to measured values of irradiance so that accurate calculations of direct solar radiation can subsequently be made. The best estimates of the diffuse component of solar radiation are obtained from the model of McCullough and Porter. The easiest and most accurate predictions of total solar radiation can be obtained from the direct-radiation models of Campbell (1977) and Gates (1962) and a modification of the diffuse-component model of McCullough and Porter (1971).  相似文献   

13.
It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The slope of the relationship between daily net photosynthesis and incident PAR was also estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident PAR above the canopy, in place of that measured on individual leaves. The slope (i.e. net PhRUE) calculated in this simple way did not differ statistically from that calculated using data from individual leaves.  相似文献   

14.
Due to fluctuations in water turbidity, river depth and total reflection from one river section to another, plant production is poorly correlated to solar radiation incident on the water surface. A relationship was observed between daily relative photosynthesis and photosynthetically available radiation (PAR) at the plant depth for Cladophora, with a correlation coefficient (r) of 0·73. Therefore, the effect of low light levels can be compensated for when evaluating nutrient-growth relationships for Cladophora in the field.  相似文献   

15.
Leaf orientations and light environments were recorded for 40 juvenile Pseudopanax crassifolius trees growing in New Zealand in a partially shaded, secondary forest environment. Efficiencies of interception of diffuse and direct light by the observed leaf arrangments were calculated relative to those of three hypothetical leaf arrangements. Canopy gaps above the study plants were unevenly distributed with respect to azimuth and elevation above the horizon. Our results indicate that photosynthetically active radiation (PAR) received from the sides is more important than that received from directly above. In 33 of the plants leaf orientation was found to be significantly clustered towards one azimuth. The mean azimuth and the mean angle of declination were different for each plant. Leaves were steeply declined, and oriented towards the largest canopy gap at each site. Steep leaf angles reduced interception of direct and diffuse PAR when compared to interception by plant with a hypothetical horizontal leaf arrangement. When compared to a hypothetical arrangement with steep leaf declination and a uniform azimuth distribution, the observed leaf arrangement increased the efficiency of interception of diffuse PAR, but had a variable effect on the interception of direct PAR. Results indicate that the developing leaves of juvenile P. crassifolius orient towards the strongest sources of diffuse light, regardless of their value as a source of direct light. By maximising diffuse light interception while reducing direct light interception, leaf orientation may be a partial determinant of the types of habitats exploited by this species. This study emphasises the importance of considering diffuse light interception for plants growing in partially shaded environments.  相似文献   

16.
为了从量子角度探讨南京地区的太阳辐射资源,在理想大气条件下对2008年南京地区的光合有效辐射波段的量子辐射进行了计算.在2008年的366天中每隔20分钟计算一次量子照度,然后通过累积计算得到太阳直接辐射年总量.应用相关公式,计算出了散射辐射年总量,总辐射年总量和光合有效辐射年总量.经过与一些相关资料的对比分析,认为计算结果正确合理.  相似文献   

17.
Stratospheric ozone loss in mid-latitudes is expected to increase the ultraviolet-B (UVB) radiation at the earth's surface. Impacts of this expected increase will depend on many factors, including the distribution of light in other wavelengths. Measurements of the photosynthetically active radiation (PAR) and UVB irradiance were made under clear skies at an open field and under the canopy of scattered trees in a suburban area in W. Lafayette, Indiana, USA (latitude 40.5°). Results showed that when there was significant sky view, the UVB penetration into sub-canopy spaces differs greatly from that of PAR. The UVBT canopy (transmittance; irradiance below canopy/irradiance in open) was inversely related to sky view. The UVB irradiance did not vary as greatly between shaded and sunlit areas as did PAR. Analysis of measurements made near a brick wall indicated that the leaf area of a canopy and the brick wall primarily acted to block fractions of the sky radiance and contributed little scattered UVB to the horizontal plant. A model was developed to predict the UVB and PART canopy based on diffuse fraction, sky view, and porosity of the crown(s) through which the beam is penetrating. The model accounted for the UVB and PART canopy to within 0.13 and 0.05 root mean squared error (RMSE), respectively. Analysis of the errors due to model assumptions indicated that care must be taken in describing the sky radiance distribution, the porosity of trees, the penetration of diffuse radiation through porous trees, and the location of sky-obstructing trees and buildings.  相似文献   

18.
反照率原位测量对生态系统能量收支及其遥感应用至关重要,但目前坡面地形反照率的测量方式有局限且可见光与近红外波段反照率时间变化的差异尚不清楚。本研究以东北地区帽儿山森林生态站的落叶阔叶林为例,探究入射和反射太阳辐射(SR,300~2800 nm)、光合有效辐射(PAR,400~700 nm)、近红外辐射(NIR,700~2800 nm)的反照率时间变化特征及其影响因子,同时分析了两种辐射表安装方式反照率的差异。结果表明: 晴天SR和NIR反照率日变化呈上下午不对称的U型曲线,但PAR从早到晚递增;阴天反照率均先急剧下降后趋于稳定。平行于坡面测量增大了反照率的日均值,但缓和了SR、NIR反照率日不对称的现象。从整个生长季来看,SR、NIR与PAR反照率水平测量时最大值分别为0.16、0.27和0.11,最小值分别为0.07、0.11和0.03。SR和NIR反照率季节变化均为先增大后减小(7月为峰值),PAR则相反,SR反照率主要受NIR而不是PAR控制。各波段反照率季节变化的影响因子按照贡献率排序为宽带归一化植被指数(61.7%~78.5%,可表征叶面积指数)>太阳高度角(15.4%~36.9%)>晴空指数(0.4%~36.9%)。  相似文献   

19.
T. OLESEN 《Austral ecology》2000,25(6):626-630
Abstract The spectral quality of photosynthetically active radiation (PAR; 400–700 nm) incident at an open site and on a forest floor was analysed to determine whether narrowband (1 nm) wavelengths could be used to estimate total incident PAR. The narrowband estimates were not as good as the broadband estimates based on silicon photovoltaic sensors, but the variance at 530 nm was sufficiently small for narrowband sensors to be considered as low‐cost and light‐weight alternatives to broadband sensors.  相似文献   

20.
Aims Light-use efficiency (LUE) is an important tool for scaling up local CO2 flux (F CO2) tower observations to regional and global carbon dynamics. Using a data set including F CO2 and environmental factors obtained from an alpine meadow on the Tibetan Plateau, we examined both diurnal and seasonal changes in LUE and the environmental factors controlling these changes. Our objectives were to (i) characterize the diurnal and daily variability of LUE in an alpine meadow, (ii) clarify the causes of this variability, and (iii) explore the possibility of applying the LUE approach to this alpine meadow by examining the relationship between daily LUE and hourly LUE at satellite visiting times.Methods First, we obtained the LUE—the ratio of the gross primary production (GPP) to the absorbed photosynthetically active radiation (APAR)—from the flux tower and meteorological observations. We then characterized the patterns of diurnal and seasonal changes in LUE, explored the environmental controls on LUE using univariate regression analyses and evaluated the effects of diffuse radiation on LUE by assigning weights through a linear programming method to beam photosynthetically active radiation (PAR) and diffuse PAR, which were separated from meteorological observations using an existing method. Finally, we examined the relationships between noontime hourly LUE and daily LUE and those between adjusted noontime hourly and daily LUE because satellites visit the site only once or twice a day, near noon.Important findings The results showed that (i) the LUE of the alpine meadow generally followed the diurnal and seasonal patterns of solar radiation but fluctuated with changes in cloud cover. (ii) The fraction of diffuse light played a dominant role in LUE variation. Daily minimum temperature and vapor pressure deficit also affected LUE variation. (iii) The adjusted APAR, defined as the weighted linear sum of diffuse APAR and beam APAR, was linearly correlated with GPP on different temporal scales. (iv) Midday adjusted LUE was closely related to daily adjusted LUE, regardless of the cloud cover. The results indicated the importance of considering radiation direction when developing LUE-based GPP-estimating models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号